рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

КИНЕМАТИКА Основные формулы

КИНЕМАТИКА Основные формулы - раздел Механика, ГЛАВА 1 ФИЗИЧЕСКИЕ ОСНОВЫ МЕХАНИКИ • Положение Материальной Точки В Пространстве Задается Радиусом-Вектором...

• Положение материальной точки в пространстве задается радиусом-векторомг:

 
 


где i, j, k — единичные векторы направлений (орты); х, у, z — координаты точки.

Кинематические уравнения движения в координатной форме:

где t — время.

• Средняя скорость

 

где— перемещение материальной точки за интервал времени.

Средняя путевая * скорость

 

где — путь, пройденный точкой за интервал времени.

Мгновенная скорость

где — проекции скорости v на оси координат.

Модуль скорости

 

• Ускорение

 

где проекции ускорения a на оси

координат.

· См. об этом термине, например, в кн.: Детлаф А. А. и др. Курс физики. М., 1973. Т. I. С. 17.

Модуль ускорения


При криволинейном движении ускорение можно представить как сумму нормальной и тангенциальной составляющих (рис.1.1):

Модули этих ускорений:

где R — радиус кривизны в данной точке траектории.

• Кинематическое уравнение равномерного движения материальной точки вдоль оси х

где начальная координата; t — время. При равномерном движении

v=const и a=0.

• Кинематическое уравнение равнопеременного движения()вдоль оси x

где v0 —начальная скорость; t— время.

Скорость точки при равнопеременном движении

v=v0+at.

• Положение твердого тела (при заданной оси вращения) определяется углом поворота (или угловым перемещением) .

Кинематическое уравнение вращательного движения

• Средняя угловая скорость

где — изменение угла поворота за интервал времени . Мгновенная угловая скорость *

• Угловое ускорение *

• Кинематическое уравнение равномерного вращения

где —начальное угловое перемещение; t—время. При равномерном вращении =const и =0.

* Угловая скорость и угловое ускорение являются аксиальными векторами, их направления совпадают с осью вращения.


Частота вращения

n=N/t, или n=1/T,

где N — число оборотов, совершаемых телом за время t; Т — период вращения (время одного полного оборота).

• Кинематическое уравнение равнопеременного вращения (= const.)

где —начальная угловая скорость; t—время.

Угловая скорость тела при равнопеременном вращении

.

• Связь между линейными и угловыми величинами, характеризующими вращение материальной точки, выражается следующими формулами:

путь, пройденный точкой по дуге окружности радиусом R,

s=R (— угол поворота тела);

скорость точки линейная

ускорение точки:

тангенциальное

нормальное

 

Примеры решения задач

Пример 1. Кинематическое уравнение движения материальной точки по прямой (ось х) имеет вид x=A+Bt+Ct3, где A=4 м, B=2 м/с, С=-0,5 м/с2. Для момента времени t1=2 с определить:

1) координату x1 точки, 2) мгновенную скорость v1, 3) мгновенное ускорение a1.

Решение. 1. Координату точки, для которой известно кинематическое уравнение движения, найдем, подставив в уравнение движения вместо t заданное значение времени t1:

x=A+Bt+Ct3.

Подставим в это выражение значения A, В, С, t1 и произведем вычисления:

X1=(4+4- 0,5 23) м=4 м.

2. Мгновенную скорость в произвольный момент времени найдем, продифференцировав координату х по времени:.

Тогда в заданный момент времени t1 мгновенная скорость

v1=B+3Ct12 Подставим сюда значения В, С, t1 и произведем вычисления:

v1=-4 м/с.


 

 

Знак минус указывает на то, что в момент времени t1=2 с точка движется в отрицательном направлении координатной оси.

3. Мгновенное ускорение в произвольный момент времени найдем, взяв вторую производную от координаты х по времени:

Мгновенное ускорение в заданный момент времени t1 равно a1=6Ct1. Подставим значения С, t1 и произведем вычисления:

a1=(—6 0,5 2) м/с=—6 м/с.

Знак минус указывает на то, что направление вектора ускорения совпадает с отрицательным направлением координатной оси, причем в условиях данной задачи это имеет место для любого момента времени.

Пример 2. Кинематическое уравнение движения материальной точки по прямой (ось х) имеет вид, x=A+Bt+Ct2, где A=5 м, B=4 м/с, С=-1 м/с2. Построить график зависимости координаты х и пути s от времени. 2. Определить среднюю скорость <vx> за интервал времени от t1=1 с до t2=6 с. 3. Найти среднюю путевую скорость <v> за тот же интервал времени.

Решение. 1. Для построения графика зависимости координаты точки от времени найдем характерные значения координаты — начальное и максимальное и моменты времени, соответствующие указанным координатам и координате, равной нулю.

Начальная координата соответствует моменту t=0. Ее значение равно

x0=x|t=0=A=5 м.

Максимального значения координата достигает в тот момент, когда точка начинает двигаться обратно (скорость меняет знак). Этот момент времени найдем, приравняв нулю первую производную от координаты повремени:

, откуда t=—B/2C=2 с Максимальная координата

xmax=x/t=2 = 9 М.

Момент времени t, когда координата х=0, найдем из выражения x=A+Bt+Ct2=0.

Решим полученное квадратное уравнение относительно t:

Подставим значения А, В, С и произведем вычисления:

t=(2±3) с.

Таким образом, получаем два значения времени: t'-=5 с и =-1 с. Второе значение времени отбрасываем, так как оно не удовлетворяет условию задачи (t>0).

 

 

График зависимости координаты точки от времени представляет собой кривую второго порядка. Для его построения необходимо иметь пять точек, так как уравнение кривой второго порядка со­держит пять коэффициентов. Поэтому кроме трех вычисленных ра­нее характерных значений координаты найдем еще два значения координаты, соответствующие моментам t1=l с и t2=6 с:

x1 = А + Bt1 + Ct12 = 8 м, x2 = А + Bt2 + Ct22 = -7 м.

Полученные данные представим в виде таблицы:

Время, с Координата, м t1=0 x0=A=5 t1=1 x0=8 tB=2 xmax=9 =5 x=0 t2=6 x2=-7

Используя данные таблицы, чертим график зависимости координаты от времени (рис. 1.2).

График пути построим, исходя из следующих соображений:

1) путь и координата до момента изменения знака скорости совпадают; 2) начиная с момента возврата (tB) точки она движется в обратном направлении и, следовательно, координата ее убывает, а путь продолжает возрастать по тому же закону, по которому убывает координата.

Следовательно, график пути до момента времени tB =2 с совпадает с графиком координаты, а начиная с этого момента яв­ляется зеркальным отображением графика координаты.

2. Средняя скорость <vx> за интервал времени t2—t1 определяется выражением

<vx>=(x2-x1)/(t2—t1).

Подставим значения x1, x2, t1, t2. из таблицы и произведем вычисления

<vx>=(—7—8)/(6—1) м/с=—3 м/с.

3. Среднюю путевую скорость <v> находим из выражения

<v>=s/(t2-t1),

где s — путь, пройденный точкой за интервал времени t2.—t1. Из графика на рис. 1.2 видно, что этот путь складывается из двух отрезков пути: S1=xmaxx1, который точка прошла за интервал времени tB—t1, и S2=xmax+|x2|, который она прошла за интервал

 

Рис. 1.2

T2—tB. Таким образом, путь

S = S1 + S2 = (xmax—x2) + (xmax + |x2|) == 2xmax + |x2|—x1.

Подставим в это выражение значения xmax , |x2|, x1 и произведем вычисления :

<s>=(2 9+7—8) м=17 м.

Тогда искомая средняя путевая скорость

<v>=17/(6—1) м=3,4 м.

Заметим, что средняя путевая скорость всегда положительна.

Пример 3. Автомобиль движется по закруглению шоссе, имеющему радиус кривизны R=50 м. Уравнение * движения автомобиля (t)=A+Bt+Ct2, где A=10 м, B=10 м/с, С=—0,5 м/с2. Найти: 1) скорость v автомобиля, его тангенциальное , нормальное аn. и полное а ускорения в момент времени t=5 с; 2) длину пути s и модуль перемещения || автомобиля за интервал времени =10 с, отсчитанный с момента начала движения.

Решение. 1. Зная уравнение движения, найдем скорость, взяв первую производную от координаты по времени:

. Подставим в это выражение значения В, С, t и произведем вычисления:

v=5 м/с.

Тангенциальное ускорение найдем, взяв первую производную от скорости по времени: Подставив значение С, получим = —1 м/с2.

Нормальное ускорение определяется по формуле an=v2/R. Подставим сюда найденное значение скорости и заданное значение радиуса кривизны траектории и произведем вычисления:

an==0,5 м/с2.

Полное ускорение, как это видно из рис. 1.1, является геометрической суммой ускорений аи аn: а=а+аn. Модуль ускорения . Подставив в это выражение найденные значения аи аn получим

а=1,12 м/с2.

2. Чтобы определить путь s, пройденный автомобилем, заметим, что в случае движения в одном направлении (как это имеет место в условиях данной задачи) длина пути s равна изменению криволинейной координаты т. е.

s=, или .

Подставим в полученное выражение значения В, С, и произведем вычисления:

s=50 м.

 
 


* В заданном уравнении движения означает криволинейную координату, отсчитанную от некоторой начальной точки на окружности.

 

Модуль перемещения, как это видно из рис. 1.3, равен |r|=2Rsin(/2),

где — угол между радиусами-векторами, определяющими начальное (0) и конечное положения автомашины на траектории. Этот угол (в радианах) находим как отношение длины пути s к радиусу кривизны R траектории, т. е. = =s/R. Таким образом,

Подставим сюда значения R, s и произведем вычисления:

|[= 47,9м.

Пример 4. Маховик, вращавшийся с постоянной частотой n0=10 с1, при торможении начал вращаться равнозамедленно. Когда торможение прекратилось, вращение маховика снова стало равномерным, но уже с частотой п=6 с1. Определить угловое ускорение маховика и продолжительность t торможения, если за время равнозамедленного движения маховик сделал N==50 оборотов.

Решение. Угловое ускорение маховика связано с начальной и конечной угловыми скоростями соотношением , откуда Но так как то

Подставив значения , п, п0, N и вычислив, получим

=3,14(62-102)/50 рад/с2=—4,02 рад/с2.

Знак минус указывает на то, что маховик вращался замедленно. Определим продолжительность торможения, используя формулу, связывающую угол поворота со средней угловой скоростью <v> вращения и временем t: =<>t. По условиям задачи, угловая скорость линейно зависит от времени и поэтому можно написать, тогда ,

Откуда

Подставив числовые значения и произведя вычисления, получим

– Конец работы –

Эта тема принадлежит разделу:

ГЛАВА 1 ФИЗИЧЕСКИЕ ОСНОВЫ МЕХАНИКИ

Задачи... Прямолинейное движение... Две прямые дороги пересекаются под углом От перекрестка по ним удаляются машины одна со скоростью v...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: КИНЕМАТИКА Основные формулы

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Эта работа не имеет других тем.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги