КИНЕМАТИКА Основные формулы

• Положение материальной точки в пространстве задается радиусом-векторомг:

 
 


где i, j, k — единичные векторы направлений (орты); х, у, z — координаты точки.

Кинематические уравнения движения в координатной форме:

где t — время.

• Средняя скорость

 

где— перемещение материальной точки за интервал времени.

Средняя путевая * скорость

 

где — путь, пройденный точкой за интервал времени.

Мгновенная скорость

где — проекции скорости v на оси координат.

Модуль скорости

 

• Ускорение

 

где проекции ускорения a на оси

координат.

· См. об этом термине, например, в кн.: Детлаф А. А. и др. Курс физики. М., 1973. Т. I. С. 17.

Модуль ускорения


При криволинейном движении ускорение можно представить как сумму нормальной и тангенциальной составляющих (рис.1.1):

Модули этих ускорений:

где R — радиус кривизны в данной точке траектории.

• Кинематическое уравнение равномерного движения материальной точки вдоль оси х

где начальная координата; t — время. При равномерном движении

v=const и a=0.

• Кинематическое уравнение равнопеременного движения()вдоль оси x

где v0 —начальная скорость; t— время.

Скорость точки при равнопеременном движении

v=v0+at.

• Положение твердого тела (при заданной оси вращения) определяется углом поворота (или угловым перемещением) .

Кинематическое уравнение вращательного движения

• Средняя угловая скорость

где — изменение угла поворота за интервал времени . Мгновенная угловая скорость *

• Угловое ускорение *

• Кинематическое уравнение равномерного вращения

где —начальное угловое перемещение; t—время. При равномерном вращении =const и =0.

* Угловая скорость и угловое ускорение являются аксиальными векторами, их направления совпадают с осью вращения.


Частота вращения

n=N/t, или n=1/T,

где N — число оборотов, совершаемых телом за время t; Т — период вращения (время одного полного оборота).

• Кинематическое уравнение равнопеременного вращения (= const.)

где —начальная угловая скорость; t—время.

Угловая скорость тела при равнопеременном вращении

.

• Связь между линейными и угловыми величинами, характеризующими вращение материальной точки, выражается следующими формулами:

путь, пройденный точкой по дуге окружности радиусом R,

s=R (— угол поворота тела);

скорость точки линейная

ускорение точки:

тангенциальное

нормальное

 

Примеры решения задач

Пример 1. Кинематическое уравнение движения материальной точки по прямой (ось х) имеет вид x=A+Bt+Ct3, где A=4 м, B=2 м/с, С=-0,5 м/с2. Для момента времени t1=2 с определить:

1) координату x1 точки, 2) мгновенную скорость v1, 3) мгновенное ускорение a1.

Решение. 1. Координату точки, для которой известно кинематическое уравнение движения, найдем, подставив в уравнение движения вместо t заданное значение времени t1:

x=A+Bt+Ct3.

Подставим в это выражение значения A, В, С, t1 и произведем вычисления:

X1=(4+4- 0,5 23) м=4 м.

2. Мгновенную скорость в произвольный момент времени найдем, продифференцировав координату х по времени:.

Тогда в заданный момент времени t1 мгновенная скорость

v1=B+3Ct12 Подставим сюда значения В, С, t1 и произведем вычисления:

v1=-4 м/с.


 

 

Знак минус указывает на то, что в момент времени t1=2 с точка движется в отрицательном направлении координатной оси.

3. Мгновенное ускорение в произвольный момент времени найдем, взяв вторую производную от координаты х по времени:

Мгновенное ускорение в заданный момент времени t1 равно a1=6Ct1. Подставим значения С, t1 и произведем вычисления:

a1=(—6 0,5 2) м/с=—6 м/с.

Знак минус указывает на то, что направление вектора ускорения совпадает с отрицательным направлением координатной оси, причем в условиях данной задачи это имеет место для любого момента времени.

Пример 2. Кинематическое уравнение движения материальной точки по прямой (ось х) имеет вид, x=A+Bt+Ct2, где A=5 м, B=4 м/с, С=-1 м/с2. Построить график зависимости координаты х и пути s от времени. 2. Определить среднюю скорость <vx> за интервал времени от t1=1 с до t2=6 с. 3. Найти среднюю путевую скорость <v> за тот же интервал времени.

Решение. 1. Для построения графика зависимости координаты точки от времени найдем характерные значения координаты — начальное и максимальное и моменты времени, соответствующие указанным координатам и координате, равной нулю.

Начальная координата соответствует моменту t=0. Ее значение равно

x0=x|t=0=A=5 м.

Максимального значения координата достигает в тот момент, когда точка начинает двигаться обратно (скорость меняет знак). Этот момент времени найдем, приравняв нулю первую производную от координаты повремени:

, откуда t=—B/2C=2 с Максимальная координата

xmax=x/t=2 = 9 М.

Момент времени t, когда координата х=0, найдем из выражения x=A+Bt+Ct2=0.

Решим полученное квадратное уравнение относительно t:

Подставим значения А, В, С и произведем вычисления:

t=(2±3) с.

Таким образом, получаем два значения времени: t'-=5 с и =-1 с. Второе значение времени отбрасываем, так как оно не удовлетворяет условию задачи (t>0).

 

 

График зависимости координаты точки от времени представляет собой кривую второго порядка. Для его построения необходимо иметь пять точек, так как уравнение кривой второго порядка со­держит пять коэффициентов. Поэтому кроме трех вычисленных ра­нее характерных значений координаты найдем еще два значения координаты, соответствующие моментам t1=l с и t2=6 с:

x1 = А + Bt1 + Ct12 = 8 м, x2 = А + Bt2 + Ct22 = -7 м.

Полученные данные представим в виде таблицы:

Время, с Координата, м t1=0 x0=A=5 t1=1 x0=8 tB=2 xmax=9 =5 x=0 t2=6 x2=-7

Используя данные таблицы, чертим график зависимости координаты от времени (рис. 1.2).

График пути построим, исходя из следующих соображений:

1) путь и координата до момента изменения знака скорости совпадают; 2) начиная с момента возврата (tB) точки она движется в обратном направлении и, следовательно, координата ее убывает, а путь продолжает возрастать по тому же закону, по которому убывает координата.

Следовательно, график пути до момента времени tB =2 с совпадает с графиком координаты, а начиная с этого момента яв­ляется зеркальным отображением графика координаты.

2. Средняя скорость <vx> за интервал времени t2—t1 определяется выражением

<vx>=(x2-x1)/(t2—t1).

Подставим значения x1, x2, t1, t2. из таблицы и произведем вычисления

<vx>=(—7—8)/(6—1) м/с=—3 м/с.

3. Среднюю путевую скорость <v> находим из выражения

<v>=s/(t2-t1),

где s — путь, пройденный точкой за интервал времени t2.—t1. Из графика на рис. 1.2 видно, что этот путь складывается из двух отрезков пути: S1=xmaxx1, который точка прошла за интервал времени tB—t1, и S2=xmax+|x2|, который она прошла за интервал

 

Рис. 1.2

T2—tB. Таким образом, путь

S = S1 + S2 = (xmax—x2) + (xmax + |x2|) == 2xmax + |x2|—x1.

Подставим в это выражение значения xmax , |x2|, x1 и произведем вычисления :

<s>=(2 9+7—8) м=17 м.

Тогда искомая средняя путевая скорость

<v>=17/(6—1) м=3,4 м.

Заметим, что средняя путевая скорость всегда положительна.

Пример 3. Автомобиль движется по закруглению шоссе, имеющему радиус кривизны R=50 м. Уравнение * движения автомобиля (t)=A+Bt+Ct2, где A=10 м, B=10 м/с, С=—0,5 м/с2. Найти: 1) скорость v автомобиля, его тангенциальное , нормальное аn. и полное а ускорения в момент времени t=5 с; 2) длину пути s и модуль перемещения || автомобиля за интервал времени =10 с, отсчитанный с момента начала движения.

Решение. 1. Зная уравнение движения, найдем скорость, взяв первую производную от координаты по времени:

. Подставим в это выражение значения В, С, t и произведем вычисления:

v=5 м/с.

Тангенциальное ускорение найдем, взяв первую производную от скорости по времени: Подставив значение С, получим = —1 м/с2.

Нормальное ускорение определяется по формуле an=v2/R. Подставим сюда найденное значение скорости и заданное значение радиуса кривизны траектории и произведем вычисления:

an==0,5 м/с2.

Полное ускорение, как это видно из рис. 1.1, является геометрической суммой ускорений аи аn: а=а+аn. Модуль ускорения . Подставив в это выражение найденные значения аи аn получим

а=1,12 м/с2.

2. Чтобы определить путь s, пройденный автомобилем, заметим, что в случае движения в одном направлении (как это имеет место в условиях данной задачи) длина пути s равна изменению криволинейной координаты т. е.

s=, или .

Подставим в полученное выражение значения В, С, и произведем вычисления:

s=50 м.

 
 


* В заданном уравнении движения означает криволинейную координату, отсчитанную от некоторой начальной точки на окружности.

 

Модуль перемещения, как это видно из рис. 1.3, равен |r|=2Rsin(/2),

где — угол между радиусами-векторами, определяющими начальное (0) и конечное положения автомашины на траектории. Этот угол (в радианах) находим как отношение длины пути s к радиусу кривизны R траектории, т. е. = =s/R. Таким образом,

Подставим сюда значения R, s и произведем вычисления:

|[= 47,9м.

Пример 4. Маховик, вращавшийся с постоянной частотой n0=10 с1, при торможении начал вращаться равнозамедленно. Когда торможение прекратилось, вращение маховика снова стало равномерным, но уже с частотой п=6 с1. Определить угловое ускорение маховика и продолжительность t торможения, если за время равнозамедленного движения маховик сделал N==50 оборотов.

Решение. Угловое ускорение маховика связано с начальной и конечной угловыми скоростями соотношением , откуда Но так как то

Подставив значения , п, п0, N и вычислив, получим

=3,14(62-102)/50 рад/с2=—4,02 рад/с2.

Знак минус указывает на то, что маховик вращался замедленно. Определим продолжительность торможения, используя формулу, связывающую угол поворота со средней угловой скоростью <v> вращения и временем t: =<>t. По условиям задачи, угловая скорость линейно зависит от времени и поэтому можно написать, тогда ,

Откуда

Подставив числовые значения и произведя вычисления, получим