рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Квадрати зоряних періодів обертання планет відносяться, як куби великих півосей їхніх орбіт.

Квадрати зоряних періодів обертання планет відносяться, як куби великих півосей їхніх орбіт. - раздел Механика, В теоретической механике изучается движение тел относительно других тел, представляющие собой физические системы отсчёта На Відміну Від Двох Перших Законів Кеплера, Що Стосуються Властивостей Орбіти...

На відміну від двох перших законів Кеплера, що стосуються властивостей орбіти кожної окремо взятої планети, третій закон пов'язує властивості орбіт різних планет між собою. Якщо періоди обертання двох планет та , а довжини великих півосей їхніх орбіт, відповідно, та , то виконується співвідношення:

Цей закон Кеплера пов'язує середні відстані планет від Сонця з їхніми зоряними періодами обертання і надає змогу встановити відносні відстані планет від Сонця, інакше кажучи, дає змогу подати великі півосі всіх планетних орбіт в одиницях великої півосі земної орбіти.

Велику піввісь земної орбіти взято за астрономічну одиницю відстаней, але її абсолютне значення було визначено пізніше, лише у XVIII столітті.

Відношення кубу півосі до квадрата періоду обертання є сталою для всіх планет Сонячної системи і залежить лише від маси Сонця і гравітаційної сталої, як довів пізніше Ньютон:

.

Таким чином, це співвідношення дає можливість «зважити» Сонце.

67 Зако́н всесві́тнього тяжі́ння — фізичний закон, що описує гравітаційну взаємодію в рамках Ньютонівської механіки. Закон стверджує, що сила притягання між двома тілами (матеріальними точками) прямо пропорційна добутку їхніх мас, і обернено пропорційна квадрату відстані між ними.

Закон всесвітнього тяжіння сформулював Ісаак Ньютон у 1687 році у трактаті «Philosophiæ Naturalis Principia Mathematica».

У математичній формі закон всесвітнього тяжіння записується для матеріальних точок у вигляді:

,

де — сила, що діє на друге тіло (матеріальну точку) з боку першого тіла, — гравітаційна стала, та — маси першого та другого тіла, відповідно, — вектор, що сполучає перше тіло з другим. — відстань між тілами.

Для абсолютної величини сили:

.

Сила притягання, що діє на перше тіло з боку другого тіла однакова за модулем і направлена протилежно:

.

Стала , яку називають гравітаційною сталою, однакова для всіх тіл, тобто є фундаментальною фізичною константою.

68 Гравіта́ція або тяжіння — властивість тіл із масою притягуватись одне до одного. Гравітаційна взаємодія найслабша ізфундаментальних взаємодій, однак її характерною особливістю є те, що тіла, які мають масу, завжди притягаються одне до одного. Притягання дуже великих мас в астрономічних масштабах створює значні сили, завдяки яким світ є таким, яким людина його знає. Зокрема, гравітація є причиною земного тяжіння, внаслідок якого предмети падають додолу. Законами гравітації визначається рух Місяця навколо Землі і Землі та інших планет навколо Сонця.

69Вага́ — сила, з якою тіло діє на горизонтальну опору або на вертикальний підвіс внаслідок впливу сили тяжіння цього об'єкта. У гравітаційному полі Землі можна вважати з деяким наближенням, що вага тіла зв'язана з його масою співвідношенням , де — вага, — стала прискорення вільного падіння на Землі, а — маса тіла.

Як будь-яка сила, вага в системі СІ вимірюється в ньютонах, в системі СГС — в динах. Однак в багатьох областях техніки ще збереглося використання кілограм-сили. Вага вимірюється також у позасистемних одиницях — фунтах, унціях, гранах. Оскільки ці історичні одиниці встановилися давно, вони застосовуються однаковою мірою як до маси так і ваги.

70 Невагомість — стан тіла, при якому відсутня внутрішня напруга, зумовлена силою тяжіння. Хоча термін нульова гравітація часто використовується як синонім, невагомість на орбіті не є результатом відсутності сили тяжіння чи навіть її значного зменшення (фактично, сила тяжіння Землі на висоті 100 км тільки на 3% менша, ніж на поверхні). Причина невагомості полягає в тому, що сила тяжіння надає тілу та його опорі однакове прискорення. Цей висновок істинний для всіх тіл, які рухаються тільки під дією сили тяжіння, тобто перебувають у вільному падінні.

71 Космічні швидкості[ред. • ред. код]

Небесна механіка вивчає поведінку тіл Сонячної системи та інших небесних тіл. Рух штучних космічних тіл вивчається астродинамікою. При цьому розглядається декілька варіантів руху тіл, у кожному з яких тілу слід надати певної швидкості. Для виведення супутника на колову орбіту йому слід надати першої космічної швидкості(наприклад для виведення на орбіту штучного супутника Землі він повинен мати швидкість 7,9 км/с). Подолати гравітаційне притягання дозволить друга космічна швидкість (наприклад, об'єкту запущеному із Землі для подолання її гравітації слід надати швидкість 11,2 км/с). Третя космічна швидкість потрібна для того, щоб покинути зоряну систему, подолавши притяганні зорі (наприклад, об'єкт, що запущений із Землі повинен мати швидкість 16,67 км/с відносно Землі при старті у найвигіднішому напрямі, а при старті з Землі у найменш вигідному напрямку його необхідно розігнати до швидкості 72,8 км/с). Четверта космічна швидкість дозволить покинути галактику.

72 Неінерційній система відліку - система відліку, до якої не застосуємо закон інерції (що говорить про те, що кожне тіло, в відсутність діючих на нього сил, рухається по прямій і з постійною швидкістю), і тому для узгодження сил і прискорень в якій доводиться вводити фіктивні сили інерції. Усяка система відліку, що рухається з прискоренням відносно інерціальної, є неінерційній.

Закони Ньютона виконуються тільки в інерціальних системах відліку. Для того, щоб знайти рівняння руху в неінерційній системі відліку, потрібно знати закони перетворення сил і прискорень при переході від інерціальної системи до будь неінерційній.

73 Си́ла іне́рції — фіктивна сила, яку вводять для опису динаміки механічного руху в неінерційних системах відліку.

,

де — сила інерції, m — маса, — прискорення, з яким рухається система координат.

На погляд спостерігача, який рухається з прискоренням, навколишні фізичні тіла здійснюють рухи, які не відповідають тим силам, що на них діють. Так, наприклад, коли потяг рушає з місця, спостерігачу, який сидить у вагоні, здається, що вокзал рушив у протилежний бік, хоча на нього не діють жодні сили.

Для того, щоб мати змогу застосовувати Ньютонівську механіку в неінерційній системі координат, вводяться фіктивні сили інерції, що діють у цій системі на всі тіла. Так, на погляд спостерігача у вагоні потягу, другий закон Ньютона виконується, якщо на вокзал діє сила -ma, де m — маса вокзалу, a — прискорення руху спостерігача.

74 Спеціальна теорія відносності (СТВ) — фізична теорія, опублікована Альбертом Ейнштейном 1905 року. Вона фактично замінює класичну механіку Ньютона, яка на той час була несумісною з рівняннями Максвелла з теорії електромагнетизму.

Окрема або спеціальна (останній термін виник в результаті невдалого букв. перекладу німецького слова speziell - окремий) теорія відносності не поширює дію своїх принципів на гравітаційні сили, тому в 1916 році Ейнштейн опублікував нову —загальну теорію відносності, яка пояснювала природу гравітації.

1. Перший постулат (принцип відносності)

Всяка фізична теорія має бути незмінною математично для будь-якого інерціального спостерігача

Жодна з властивостей Всесвіту не може змінитись, якщо спостерігач змінить стан руху. Закони фізики залишаються однаковими для усіх інерціальних систем відліку.

2. Другий постулат (інваріантність швидкості світла)

Швидкість світла у вакуумі є однаковою для всіх інерціальних спостерігачів в усіх напрямах і не залежить від швидкості джерела випромінювання. Разом з першим постулатом, цей другий постулат еквівалентний тому твердженню, що світло не потребує жодного середовища (такого як ефір) для розповсюдження.

75 Молекуля́рна фі́зика — розділ фізики, який вивчає речовину на рівні молекул. Речовину на рівні атомів вивчає атомна фізика.Термодинáміка — розділ теоретичної фізики, що стосується законів явищ поширення та збереження тепла. Розрізняють феноменологічну та статистичну термодинаміки. Остання в свою чергу поділяється на класичну й квантову.

Термодинаміка вивчає процеси, які відбуваються в тілах, що перебувають у тепловій рівновазі з іншими тілами. Важливою характеристикою теплової рівноваги є температура. Рівняння стану пов'язує між собою такі характеристики тіл, як тиск, об'єм та температуру.

76 Молекулярная физика и термодинамика — разделы физики, в которых изучаются макроскопические процессы в телах, связанные с огромным числом содержащихся в телах атомов и молекул. Для исследования этих процессов применяют два качественно различных и взаимно допол­няющих друг друга метода: статистический (молекулярно-кинетический) и термодинами­ческий. Первый лежит в основе молекулярной физики, второй — термодинамики.

Молекулярная физика — раздел физики, изучающий строение и свойства вещества исходя из молекулярно-кинетических представлений, основывающихся на том, что все тела состоят из молекул, находящихся в непрерывном хаотическом движении.

Идея об атомном строении вещества высказана древнегреческим философом Демо­критом (460—370 до н. э.). Атомистика возрождается вновь лишь в XVII в. и развива­ется в работах М. В. Ломоносова, взгляды которого на строение вещества и тепловые явления были близки к современным. Строгое развитие молекулярной теории относит­ся к середине XIX в. и связано с работами немецкого физика Р. Клаузиуса (1822—1888), Дж. Максвелла и Л. Больцмана.

Процессы, изучаемые молекулярной физикой, являются результатом совокупного действия огромного числа молекул. Законы поведения огромного числа молекул, являясь статистическими закономерностями, изучаются с помощью статистического метода. Этот метод основан на том, что свойства макроскопической системы в конеч­ном счете определяются свойствами частиц системы, особенностями их движения и усредненными значениями динамических характеристик этих частиц (скорости, энер­гии и т. д.). Например, температура тела определяется скоростью хаотического движе­ния его молекул, но так как в любой момент времени разные молекулы имеют различные скорости, то она может быть выражена только через среднее значение скорости движения молекул. Нельзя говорить о температуре одной молекулы. Таким образом, макроскопические характеристики тел имеют физический смысл лишь в слу­чае большого числа молекул.

Термодинамика — раздел физики, изучающий общие свойства макроскопических систем, находящихся в состоянии термодинамического равновесия, и процессы перехо­да между этими состояниями. Термодинамика не рассматривает микропроцессы, кото­рые лежат в основе этих превращений. Этимтермодинамический метод отличается от статистического. Термодинамика базируется на двух началах — фундаментальных за­конах, установленных в результате обобщения опытных данных.

Область применения термодинамики значительно шире, чем молекулярно-кинетической теории, ибо нет таких областей физики и химии, в которых нельзя было бы пользоваться термодинамическим методом. Однако, с другой стороны, термодинами­ческий метод несколько ограничен: термодинамика ничего не говорит о микроскопи­ческом строении вещества, о механизме явлений, а лишь устанавливает связи между макроскопическими свойствами вещества. Молекулярно-кинетическая теория и термо­динамика взаимно дополняют друг друга, образуя единое целое, но отличаясь различ­ными методами исследования.

77 Температурні шкали[ред. • ред. код]

Для однозначного визначення температури різними методами й на основі зміни різних властивостей термометричних тіл, термометри необхідно градуювати. Для цього використовуються температурні шкали. В основі температурних шкал — особливі реперні точки, яким присвоюється певне значення температури. Історично склалися різні температурні шкали, що використовують різні реперні точки, які пов'язані з певними фізичними явищами, що відбуваються при певній температурі.

В Міжнародній системі одиниць (СІ) термодинамічна температура належить до семи основних одиниць і виражається у кельвінах. До похідних величин СІ, які мають спеціальну назву, належить температура Цельсія, яка вимірюється у градусах Цельсія[3]. На практиці часто застосовують градуси Цельсія через історичну прив'язку до важливих характеристик води - температури танення льоду (0 °C) і температури кипіння (100 °C). Це зручно, оскільки більшість кліматичних процесів, процесів у живій природі, тощо пов'язані з цим діапазоном. Зміна температури на один градус Цельсія тотожна зміні температури на один Кельвін. Тому після введення в 1967 році нового визначення Кельвіна, температура кипіння води перестала грати роль незмінної реперної точки і, як показують точні вимірювання, вона вже не дорівнює 100 °C, а близька до 99,975 °C[4].

 

Особливі точки температурних шкал
Шкали Точки замерзання води Точки кипіння води Інтервал
Реомюра (R)
Фаренгейта (F)
Цельсія (C)

У Міжнародній системі одиниць (СІ) для вимірювання температури застосовується шкала Кельвіна і символ K (при цьому знак градусу ° відсутній). Широкий вжиток також мають системи Цельсія і Фаренгейта.

– Конец работы –

Эта тема принадлежит разделу:

В теоретической механике изучается движение тел относительно других тел, представляющие собой физические системы отсчёта

В теоретической механике изучается движение тел относительно других тел представляющие собой физические системы отсч та... Механика позволяет не только описывать но и предсказывать движение тел... Основные абстрактные модели реальных тел...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Квадрати зоряних періодів обертання планет відносяться, як куби великих півосей їхніх орбіт.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Рівняння нерозривності стаціонарного руху рідини в гідравлічній формі
Розглянемо спочатку елементарну струминку . Відповідно до закону збереження маси можна стверджувати, що масова витрата через усякий живий переріз елементарної струминки є величиною сталою, тобто dm

Гармонічна хвиля
Гармонійної хвилею називається лінійна монохроматична хвиля, що поширюється в нескінченній динамічній системі. У розподілених системах загальний вигляд хвилі описується виразом, є аналітичним рішен

Теорія похибок
Абсолютна похибка вимірювання (рос. абсолютная погрешность измерения, англ. absolute error of measurement, нім. absoluter Messfehler) — абсолютна різниця міжре

Радіус-вектор планети (тіла Сонячної системи) за рівні проміжки часу описує рівновеликі площі.
Лінійна швидкість руху планети неоднакова в різних точках її орбіти: що ближча планета до Сонця, то більша її швидкість. Швид­кість руху планети у перигелії найбільша, а в афелії — найменша. Однак

За шкалою Кельвіна
0 градусів відповідають абсолютному нулю, тобто повній відсутності руху молекул. Інша реперна точка - потрійна точка води. Її температура 273,16 К вибрана так, щоб один кельвін відповідав одному гр

За шкалою Фаренгейта
замерзання і кипіння води розділяють 180 °F. Один градус за Фаренгейтом дорівнює 5/9 кельвіна або градуса Цельсія. Вода замерзає при 32 °F, а кипить при 212 °F. 78 Ідеа́льний

Див. також
91 Теплове́ розши́рення — зміна геометричних розмірів (об'єму) тіла внаслідок зміни його температури[1]. Ця властивість характерна для всіх речовин. К

Від вільної енергії Гіббса G
. 97 Дру́гий закон термодина́міки — один із основних законів фізики,

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги