рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

За шкалою Фаренгейта

За шкалою Фаренгейта - раздел Механика, В теоретической механике изучается движение тел относительно других тел, представляющие собой физические системы отсчёта Замерзання І Кипіння Води Розділяють 180 °F. Один Градус За Фаренгейтом Дорів...

замерзання і кипіння води розділяють 180 °F. Один градус за Фаренгейтом дорівнює 5/9 кельвіна або градуса Цельсія. Вода замерзає при 32 °F, а кипить при 212 °F.

78 Ідеа́льний газ (рос. идеальный газ; англ. ideal gas, нім. ideales Gas n) — це газ, в якому молекули можна вважати матеріальними точками, а силами притягання й відштовхування між молекулами можна знехтувати. У природі такого газу не існує, але близькими за властивостями до ідеального газу є реальні розріджені гази, тиск в яких не перевищує 200 атмосфер і які перебувають при не дуже низькій температурі, оскільки за таких умов відстань між молекулами набагато перевищує їх розміри.

Розрізняють три типи ідеального газу:

· Класичний ідеальний газ або газ Максвелла-Больцмана.

· Ідеальний квантовий газ Бозе (складається з бозонів). Див. статистика Бозе-Ейнштейна.

· Ідеальний квантовий газ Фермі (складається з ферміонів). Див. статистика Фермі-Дірака.

79 Термодинаміка класичного ідеального газу[ред. • ред. код]

Термодинамічні властивості ідеального газу можна описати такими двома рівняннями:

Стан класичного ідеального газу описується рівнянням стану ідеального газу:

Внутрішня енергія ідеального газу описується наступним рівнянням:

де є константою (рівною, наприклад, 3/2 для одноатомного газу) і

· U — внутрішня енергія (вим. у джоулях)

· P — тиск (паскаль)

· V — об'єм (метр кубічний)

· n — кількість речовини (моль)

· R — газова стала (джоуль на моль на градус Кельвіна)

· T — абсолютна температура (градуси Кельвіна)

· N — кількість молекул

· kB — стала Больцмана (джоуль на градус Кельвіна на молекулу)

Інші термодинамічні величини для одноатомного ідеального газу:

Вільна енергія:

,

де m — маса атома газу, — приведена стала Планка.

Хімічний потенціал

80

Ця форма запису носить назву рівняння (закона) Клапейрона—Менделєєва.

81Здесь введена величина – средняя квадратичная скорость, равная корню квадратному из суммы квадратов всех скоростей, делённой на число молекул:

. (10)

Тогда

, (11)
где n –концентрация молекул.

Это уравнение называется основным уравнением молекулярно-кинетической теории идеального газа.

82 Закон розподілу молекул ідеального газу по швидкостях, теоретично отриманий Максвеллом в 1860 г. визначає, яке число dn молекул однорідного (p = const) одноатомного ідеального газу із загального числа N його молекул в одиниці об'єму має при даній температурі Т швидкості, які лежать в інтервалі від v до v + dv.

Для висновку функції розподілу молекул по швидкостях f(v) рівної відношенню числа молекул dn, швидкості яких лежать в інтервалі v¸ v + dv до загального числа молекул N і величині інтервалу dv

83Барометри́чна фо́рмула (рос. барометрическая формула; англ. barometric height formula; нім. barometrische Formel) — формула, за якою визначають залежність тискуабо густини газу від висоти. Ця залежність зумовлена дією поля тяжіння Землі і тепловим рухом молекул газу (повітря). Припускаючи, що газ є ідеальним газом сталоїтемператури, і вважаючи поле тяжіння Землі однорідним, отримують барометричну формулу такого вигляду:

,

де p0 — тиск на нульовому рівні (на рівні вибою в газових свердловинах, біля поверхні Землі або на рівні моря), Па;

p — тиск на висоті h, м над цією поверхнею, Па;

m — маса молекули (для повітря дорівнює масі молекули азоту), кг;

g — прискорення вільного падіння, м/с2;

k — стала Больцмана, Дж/К;

T — абсолютна температура повітря, К.

84 Розпо́діл Ма́ксвелла — Бо́льцмана визначає ймовірність того, що частинка ідеального газу перебуває в стані з певною енергією.

Ймовірність того, що частинка перебуває в стані з енергією згідно з розподілом Больцмана визначається формулою:

,

де μ — хімічний потенціал, T — температура, kB — стала Больцмана,
— параметр виродження.

Хімічний потенціал μ визначається з умови

де N — число частинок.

Розподіл Больцмана справедливий тільки в тих випадках, коли . Ця умова реалізується при високих температурах.

85 Средний путь, проходимый молекулой за единицу времени, численно равен . Поэтому средняя длина свободного пробега равна или

(11.8)

Таким образом, средняя длина свободного пробега не зависит от температуры газа, т.к. с ростом температуры одновременно возрастают и , и . При подсчете числа соударений и средней длины свободного пробега молекул за модель молекулы было принято шарообразное упругое тело. В действительности каждая молекула представляет собой сложную систему элементарных частиц и при рассмотрении упругого соударения молекул имелось в виду, что центры молекул могут сблизиться до некоторого наименьшего расстояния. Затем возникает силы отталкивания которые вызывают взаимодействие, подобное взаимодействию при упругом ударе. Среднее расстояние между центрами молекул, взаимодействующих, как при упругом ударе, называют эффективным диаметром . Тогда

86 В термодинамически неравновесных системах возникают особые необратимые процес­сы, называемые явлениями переноса, в результате которых происходит пространственный перенос энергии, массы, импульса. К явлениям переноса относятся теплопроводность (обусловлена переносом энергии),диффузия (обусловлена переносом массы) и внутреннее трение (обусловлено переносом импульса). Для простоты ограничимся одномерными явлениями переноса. Систему отсчета выберем так, чтобы ось х была ориентирована в направлении переноса.

1. Теплопроводность. Если в одной области газа средняя кинетическая энергия молекул больше,чем в другой, то с течением времени вследствие постоянных сто­лкновений молекул происходит процесс выравнивания средних кинетических энергий молекул, т. е., иными словами, выравнивание температур.

Перенос энергии в форме теплоты подчиняетсязакону Фурье:

(48.1)

где jEплотность теплового потока — величина, определяемая энергией, переносимой в форме теплоты в единицу времени через единичную площадку,перпендикулярную оси х,  теплопроводность, — градиент температуры, равный скорости изменения температуры на единицу длины х в направлении нормали к этой площадке. Знак минус показывает, что при теплопроводности энергия переносится в направлении убывания температуры (поэтому знаки jE и – противоположны). Теплопроводность  численно равна плотности теплового потока при градиенте температуры, равном единице.

Можно показать, что

(48.2)

где сV — удельная теплоемкость газа при постоянном объеме (количество теплоты, необходимое для нагревания 1 кг газа на 1 К при постоянном объеме), — плотность газа, <v> — средняя скорость теплового движения молекул, <l> — средняя длина сво­бодного пробега.

87 Вн́утрішня ене́ргія тіла (позначається як E або U) — повна енергія термодинамічної системи за винятком її кінетичної енергії як цілого і потенціальної енергії тіла в полі зовнішніх сил. Внутрішня енергія складається з кінетичної енергії хаотичного руху молекул, потенціальної енергії взаємодії між ними і внутрішньомолекулярної енергії.

Внутрішня енергія є однозначною функцією рівноважного стану системи. Це означає, що кожний раз, коли система опиняється в даному рівноважному стані, її внутрішня енергія приймає властиве цьому стану значення, незалежно від передісторії системи. Отже, зміна внутрішньої енергії при переході з одного стану в інший буде завжди дорівнювати різниці значень в цих станах, незалежно від шляху, по якому здійснювався перехід. Внутрішню енергію тіла не можна виміряти напряму. Можна визначити тільки зміну внутрішньої енергії:

,

де — кількість теплоти, передана термодинамічній системі, — робота, виконана над термодинамічною системою[1] або:

,

де , робота виконана термодинамічною системою.

88 Число ступенів свободи: механічної системи називається кількість незалежних величин, з допомогою яких може бути задане положення системи. Одноатомний газ має три поступальні ступені свободи і = 3, тому що для опису положення такого газу в просторі досить трьох координат (х, y, z).

Твердим зв'язком називається зв'язок, при якому відстань між атомами не змінюється. Двохатомні молекули із твердим зв'язком (N2, O2, Н2) мають 3 поступальні ступені свободи й 2

89 Незалежно від загального числа ступенів свободи молекул 3 ступеня свободи завжди поступальні. Жодна з поступальних ступенів не має переваги перед іншими, тому на кожну з них доводиться в середньому однакова енергія, рівна 1/3 значення

Больцман установив закон, згідно з яким для статистичної системи ( тобто для системи в якої число молекул велике), що перебуває в стані термодинамічної рівноваги на кожний поступальний і обертальний ступінь свободи доводиться в середньому кінетична енергія, рівна 1/2 , і на кожний коливальний ступінь свободи - у середньому енергія, рівна . Коливальний ступінь свободи « має» удвічі більшу енергію тому, що на неї доводиться не тільки кінетична енергія (як у випадку поступального й обертового руху), але й потенційна енергія, причому

у такий спосіб середня енергія молекули

90 Пе́рший зако́н термодина́міки — одне з основних положень термодинаміки, є, по суті, законом збереження енергії у застосуванні дотермодинамічних процесів. Перший закон термодинаміки сформульований в середині 19 століття в результаті робіт Саді Карно, Юліуса фон Маєра, Джеймса Прескотта Джоуля і Германа фон Гельмгольца. Перший початок термодинаміки часто формулюють як неможливість існування вічного двигуна 1-го роду, який здійснював би роботу, не черпаючи енергію з якого-небудь джерела.

Перший закон термодинаміки[ред. • ред. код]

Зміна внутрішньої енергії закритої системи, яка відбувається в рівноважному процесі переходу системи із стану 1 в стан 2, дорівнює сумі роботи, зробленої над системою зовнішніми силами, і кількості теплоти, наданої системі: ΔU = A' + Q. Робота здійснена системою над зовнішніми тілами в процесі 1->2 (Назвемо її просто А) A=-A', тоді закон приймає вигляд:

.

Кількість теплоти, що надається системі, витрачається на зміну внутрішньої енергії системи і на здійснення системою роботи проти зовнішніх сил.

Для елементарної кількості теплоти δQ; елементарної роботи δA і малої зміни dU внутрішньої енергії перший закон термодинаміки має вигляд:

– Конец работы –

Эта тема принадлежит разделу:

В теоретической механике изучается движение тел относительно других тел, представляющие собой физические системы отсчёта

В теоретической механике изучается движение тел относительно других тел представляющие собой физические системы отсч та... Механика позволяет не только описывать но и предсказывать движение тел... Основные абстрактные модели реальных тел...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: За шкалою Фаренгейта

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Рівняння нерозривності стаціонарного руху рідини в гідравлічній формі
Розглянемо спочатку елементарну струминку . Відповідно до закону збереження маси можна стверджувати, що масова витрата через усякий живий переріз елементарної струминки є величиною сталою, тобто dm

Гармонічна хвиля
Гармонійної хвилею називається лінійна монохроматична хвиля, що поширюється в нескінченній динамічній системі. У розподілених системах загальний вигляд хвилі описується виразом, є аналітичним рішен

Теорія похибок
Абсолютна похибка вимірювання (рос. абсолютная погрешность измерения, англ. absolute error of measurement, нім. absoluter Messfehler) — абсолютна різниця міжре

Радіус-вектор планети (тіла Сонячної системи) за рівні проміжки часу описує рівновеликі площі.
Лінійна швидкість руху планети неоднакова в різних точках її орбіти: що ближча планета до Сонця, то більша її швидкість. Швид­кість руху планети у перигелії найбільша, а в афелії — найменша. Однак

Квадрати зоряних періодів обертання планет відносяться, як куби великих півосей їхніх орбіт.
На відміну від двох перших законів Кеплера, що стосуються властивостей орбіти кожної окремо взятої планети, третій закон пов'язує властивості орбіт різних планет між собою. Якщо періоди обертання д

За шкалою Кельвіна
0 градусів відповідають абсолютному нулю, тобто повній відсутності руху молекул. Інша реперна точка - потрійна точка води. Її температура 273,16 К вибрана так, щоб один кельвін відповідав одному гр

Див. також
91 Теплове́ розши́рення — зміна геометричних розмірів (об'єму) тіла внаслідок зміни його температури[1]. Ця властивість характерна для всіх речовин. К

Від вільної енергії Гіббса G
. 97 Дру́гий закон термодина́міки — один із основних законів фізики,

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги