Дифракция — явление отклонения света от прямолинейного распространения и захожде­ние в область геометрической тени.

В результате происходит сложение волн и обра­зование мини­мумов и максимумов, так же как и при интерференции. Для наблюдения явления дифракции необходимо, чтобы раз­меры препят­ствия или размеры отверстия или щели были со­изме­римы с длиной световой волны. Явление дифракции можно объяснить, используя прин­цип Гюйгенса — Френеля. Пусть на щель, раз­меры которой соизме­римы с длиной световой волны, падают световые волны. Каждая точка щели становится новым источником вторичных волн. Крае­вые точки щели, являясь источниками вторичных световых волн, дают возможность распространяться свету в направлении, отлич­ном от первоначального.

Вторичные волны, интерферируя, образуют на экране диф­ракционные максимумы и мини­мумы.

От одной щели свет дает дифракционную кар­тину малой ин­тенсивности, поэтому исполь­зуют одномоментно несколько от­верстий, т.е. дифрак­ционную решетку.

Дифракционная решетка — это совокупность многих парал­лельных щелей, разделенных не­прозрачными промежутками. Общая длина щели и непрозрачного промежутка называется перио­дом решетки (d).

Дифракционную решетку можно получить, на­нося на стек­лянную пластинку параллельные штрихи с помощью алмазного резца. Хорошие дифракционные решетки имеют до 1000 и более штрихов на 1 мм, что позволяет получить боль­шие углы диф­ракции, т.е. широкую дифрак­ци­онную картину большой интен­сивности. Рас­смотрим дифракцию света от двух щелей при ус­ловии перпендикулярного падения света на них.

 

В этом слу­чае фронт световой волны достигает щелей одновременно. Следо­вательно, образую­щиеся от щелей вторичные волны, являются коге­рентными. Волны, иду­щие по различным на­правлениям, будут ин­терферировать, давая ди­фракционную картину максимумов и миниму­мов. Выберем два па­раллельных луча (АА1) и (ВВ1), отклоненные от первоначального направ­ления на угол а. Этот угол называется углом ди­фракции. Эти лучи, пройдя линзу, соберутся в ее фокальной плоскости (F) в точке О1, ослабив или усилив друг друга, причем АО1 = х1, ВО1 = х2. Пусть в точке О1 бу­дет максимум колебаний. То­гда по условию максимумов ∆х = kλ (1). Выразим эту разность хода лучей из геометрии построе­ния. Проведем перпендикуляр АС, построив тем самым фронт волны отклоненных лучей АА1 и ВВ1. Т.к. линза не вносит добавоч­ной разности хода этих лучей, то ∆х = ВС и ВС = АВ sin?BAC. AB = d - период дифракционной решетки, угол ВАС = α, ∆х = dsin α (2).

Сравнивая (1) и (2), получим

kλ = dsinα

это уравнение дифракционной решетки, к = 0,±1, ±2, ±3... — поря­док дифракционного максимума. Т.о. в фокальной плоскости возникает ряд чере­дующихся мак­симумов и минимумов, т.е. свет­лых и темных полос, разделенных проме­жут­ками. Если на решетку падает белый свет, то для различных длин волн положение дифракци­он­ных максимумов будет располагать­ся под раз­личным дифракционным углом. Поэтому ди­фракцион­ные решетки разлагают белый свет в дифракционный спектр и употребляются как дисперсионный прибор. С помощью дифракци­онной решетки, зная период решетки и опреде­лив угол дифракции, можно измерить длину све­товой вол­ны по формуле: