Механические свойства латунного проката

Из латуней производятся практически все виды проката. Прутки латунные (круглые, шестигранные и квадратные) выпускаются по ГОСТ 2060-2006. Номиналы и состояния прутков различных марок приведены в таблице.

 

  Состояние прутка Марка латуни и диаметры прутков в мм
Л63 Л63-3 ЛС59-1 ЛС58-3 ЛЖС 58-1-1 ЛО62-1 ЛМц 58-2 ЛЖМц 59-1-1 ЛАЖ 60-1-1
Твердое 3 - 12 3 - 20 3 - 12 - - - - -
Полутв. 3 - 40 10 - 20 3 - 40 3 - 50 -
Мягкое 3 - 50 - 3 - 50 - - - - -
Прессован. 10 -180 - 10 - 180

 

На рисунке приведены значения основных параметров механических свойств для прутков из нескольких марок латуней и, для сравнения, из меди (правая часть рисунка).

 

Из рисунка хорошо видно насколько латуни тверже и прочнее меди.

Коррозионные свойства латуней Латуни в целом имеют лучшую коррозионную стойкость по сравнению с медью. Однако, полуфабрикаты в холоднодеформированном состоянии (в том числе после обработки резанием) из простых и многих специальных латуней подвержены коррозионному растрескиванию. Наиболее чувствительны к коррозионному растрескиванию Л68 и Л63. Скорость коррозии резко возрастает с ростом температуры. Наиболее губительно этот вид коррозии проявляется в тонкостенных изделиях. Основной причиной коррозионного растрескивания являются остаточные растягивающие напряжения в металле, а провоцирующие факторы - наличие влаги, следов аммиака и сернистого газа в атмосфере. Это явление называют сезонным, т.к. оно зависит от влажности и его интенсивность неодинакова в разные времена года. Для предотвращения этого явления полуфабрикаты и изделия после обработки подвергают низкотемпературному отжигу при , который снимает внутренние напряжения.

Естественно, что разные латуни имеют различную степень коррозионной стойкости в одинаковых средах. Особая стойкость отдельных латуней к конкретным средам и условиям эксплуатации (спокойное состояние или течение, аэрация, ударное воздействие среды) определяет сферу их применения.

Общая характеристика коррозионной устойчивости латуней следующая: Латуни устойчивы в следующих средах (при нормальных температурах):- воздух, т.ч. морской - сухой пар при малых скоростях (кислород, углекислота и аммиак ускоряют коррозию)- пресная вода (аммиак, сероводород, хлориды, кислоты ускоряют коррозию)- в морской воде при небольших скоростях движения воды- сухие газы-галогены- антифризы, спирты, фреоны Относительно устойчивы:

- щелочи без перемешивания Латуни неустойчивы в следующих средах:- влажный насыщенный пар при высоких скоростях- рудничные воды

- окислительные растворы, хлориды- минеральные кислоты- сероводород- жирные кислоты. Контактная коррозия: латунь не следует применять в контакте с железом, алюминием, цинком, т.к. она будет ускоренно разрушаться.

 

Литейные и деформируемые алюминиевые сплавы. Состав, структура, термообработка, маркировка: Сплавы на основе алюминияВследствие большого разнообразия свойств алюминиевые сплавы получили весьма широкое распростране­ние, особенно в авиастроении. Все алюминиевые сплавы разделяют на деформируемые, литейные, спеченные порошковые.Деформируемые алюминиевые сплавы обладают хорошей пластич­ностью. Из них изготавливают прутки, трубы, листы, профили различ­ных сечений, проволоку, поковки, штамповки. Для изготовления деталей и полуфабрикатов применяют различные методы обработки давлением: прессование, ковку, горячую штамповку, гибку, прокатку, волочение. Пластическую деформацию используют также для упрочнения алюминиевых сплавов, поскольку при этом возникает анизотропия свойств.Все алюминиевые сплавы можно сваривать различными спосо­бами. При этом в местах сварки устраняется анизотропия свойств, чтo необходимо учитывать. Все деформируемые алюминиевые сплавы разделяют на упрочняе­мые и неупрочняемые термичес­кой обраоткой (старением).По химическому составу деформируемые алюминиевые сплавы разделяют на группы, которые строят по наличию основных элементов, входящих в химический состав сплавов. Наиболее употребительна группа сплавов AI - Си - Mg(дуралюмины). Высокопрочные сплавы имеют в основе Аl - Zn - Mg - Си. Сплавы для ковки, штам­повки содержат Аl - Mg -Si - Си. Широко применяют сплавы Al - Мп и Al - Mg. Деформируемые алюминиевые сплавы маркируют буквой Д, высокопрочные - буквой В, ковочные - АК.Литейные алюминиевые сплавы выделены в отдельный класс сплавов, поскольку их объединяет наличие основных свойств: жидко- текучесть, объемная и литейная усадка, склонность к образованию усадочных трещин и ликвации.Среди литейных алюминиевых сплавов наиболее широко расп­ространены силумины системы Аl - Si. Для литья деталей сложной формы, кроме силуминов, применяют сплавы на основе Аl - Си - Mg, Al - Си и др. Эти сплавы отличаются от соответствующих по составу деформируемых сплавов более высоким содержанием меди и магния, а также тугоплавких добавок: титана, никеля, железа, хрома и др.Такие сплавы могут быть использованы как жаропрочные. Как правило, отливки из этих сплавов подвергают термической обработке. Маркируют литейные алюминиевые сплавы буквами AЛ.Имеются два класса алюминиевых сплавов, разделяемых по признаку влияния термообработки на неупрочняемые и упрочняемые термообработкой. Эти сплавы широко применяются в авиастроении.Неупрочняемые термообработкой алюминиевые сплавы создают на основе систем Аl - Mg и Аl - Мn. В структуре этих сплавов раствори­мость компонентов в алюминии не изменяется и фазовые превращения при нагревании и выдержке не происходят.Упрочняемые термообработкой алюминиевые сплавы - наиболее широко распространенный класс сплавов.Термообработка алюминиевых сплавовОна позволяет получить большое разнообразие структур. В этом случае можно добиться значи­тельного упрочнения, что и обеспечило самое широкое применение термообработки алюминиевых сплавов. Физический смысл термообработки сплавов алюминия состоит в том, что при этом изменяется и концентрация твердого раствора легирующих элементов валюминии, При этом меняется фазовый состав, что повышает прочность сплайн при сохранении достаточной пластичности. Рассмотрим это положение на конкретном примере. В сплаве системы Аl - Си образуется интерметаллическое соединениеCuAI2. Если этот сплав нагреть до 500 - 540°С, то частицы СuАl2 растворятся в алюминии. При быстром охлаждении фаза СuАl2 не успевает выделиться из твердого раствора и остается в нем, в результате чего получается упрочнение сплава(закалка). Фазовые изменения в алюминиевых сплавах могут происходить не только при нагреве, но и при комнатной температуре. Для алюминиевых сплавов наиболее широкое распространение получили следующие виды термообработки: отжиг, закалка и старение.Отжиг применяют для улучшения пластичности. При этом полу­чается более равновесное фазовое состояние. Взависимости от поставленной цели отжиг разделяют на три вида: гомогенизирую­щий, рекристаллизационный, а также для разупрочнения.Гомогенизирующий отжиг проводят, как правило, для устранения неоднородностей структуры сплава. Температура нагрева при этом 450 - 520°С. Время выдержки при этой температуре 4 - 40 ч. После этого сплав охлаждают.Рекристаллизационный отжиг выполняют для обеспечения высо­кой пластичности и снижения прочности деталей после пластической деформации. Алюминиевые сплавы нагревают до 300 - 500°С, соот­ветствующих температуре окончания первичной рекристаллизации. Длительность такого отжига 0,5 - 2 ч.Отжиг для разупрочнения применяют для снижения прочности перед последующей обработкой давлением, например штамповкой.Закалка может быть применена только для тех сплавов, которые в твердом состоянии могут претерпевать фазовые превращения. Цель закалки - получить в сплаве предельно неравномерную структуру - пресыщенный твердый раствор с максимальным содержанием леги­рующих элементов. Такая структура обеспечивает возможность даль­нейшего упрочнения старением. Сразу после закалки алюминиевые сплавы не становятся более прочными. Они приобретаютзаданные характеристики прочности после завершения процесса старения, т.е. после окончания фазовых превращений в твердом состоянии.Таким образом, если в сплаве находятся только компоненты, не растворимые в твердом алюминии, его закалка невозможна.Закалка алюминиевых сплавов заключается в нагреве их до температуры, при которой легирующие элементы частично или пол­ностью растворяются в алюминии. При этой температуре сплав выдер­живают, а затем быстро охлаждают до весьма низкой температуры (10 - 20 °С). Выдержка нужна для прохождения процесса растворения. Кик правило, охлаждение алюминиевых сплавов производят в воде.Алюминиевые сплавы могут подвергаться процессам старения при нагреве (обычно 100 - 200 °С) или при комнатной температуре. Старение с нагревом называют искусственным старением. Старение при комнатной температуре называют естественным старением.Состояние алюминиевых сплавов сразу после закалки называют свежезакаленным. Поскольку при этом существенное повышение прочности еще не началось, деталь или заготовку можно легко обра­батывать (например, гнуть) в течение нескольких часов. Затем твердость и прочность возрастают. В самолетостроительном производстве это свойство используется очень широко. Сплавы алюминия, применяемые в авиастроении В авиастроении наиболее широко применяют деформируемые алюминиевые сплавы - дуралюмины Д1, Д16, Д18. Цифры после буквы Д обозначают номер I марки и никакой другой информации не содержат. Эти сплавы отно­сятся к системе Аl - Си - Mg. Из этих сплавов изготавливают прес­сованные прутки, листы, профили, плиты и поставляют в промышлен­ные предприятия.Дуралюмин Д1 - наиболее старый сплав, предложенный еще в 1906 г. немецким исследователем А. Вильмом - относится к сплавам повышенной прочности. Дуралюмин Д16 относится к сплавам повы­шенной прочности. Он отличается от Д1 более высоким содержанием магния. Дуралюмины повышенной жаропрочности - Д19, ВАД-1, ВД-17. В них больший процент содержания Mg, Мп. Кроме того, в сплав ВАД-1 введены Ti и Zг.Дуралюмины повышенной пластичности (Д18 и В65) отличаются пониженным содержанием Си и Mg, Это и придает им большую плас­тичность. Вот почему заклепки для авиационных конструкций изго­тавливают часто из дуралюмина В65 или Д18.Изделия из дуралюмина обычно подвергают закалке и после­дующему естественному старению. При этом необходимо жестко соб­людать рекомендованную температуру нагрева дуралюминов под закалку. Например, нагрев под закалку должен соответствовать температуре 505 'С (Д1, Д19, ВАД-1) или 500 °С (Д16, ВД17, Д18) с допус­ком всего 5 °С. Если осуществить нагрев до более высоких температур, то произойдет оплавление легкоплавких структурных составляющих, которые при охлаждении дадут усадку, что приведет к растрескива­нию. Брак при этом получается неисправимым. При закалке дуралю­минов необходимо обеспечить высокую скорость охлаждения, так как могут произойти фазовые изменения за период переноса детали из печи в охлаждающую ванну, наполненную холодной водой.Все дуралюмины интенсивно упрочняются при естественном старении. Для сплавов Д1 и Д16 максимальная прочность достигается через 4 суток, а для сплава ВАД1 через 10 суток. Алюминиевые сплавы подвергают различным видам термической обработки.Приведем некоторые буквенные обозначения, которые ставятся после обозначения марки сплава. Буква А, поставленная сразу после марки, обозначает, что полуфабрикат плакирован. Плакирование представляет собой покрытие с помощью прокатки фольгой из техни­ческого алюминия. За очень короткое время он покрывается пленкой окисла Аl2O3 и предотвращает проникновение веществ окружающей среды к основному металлу.Далее, как правило, ставят вид термообработки: Т - твердый, закаленный и естественно состаренный; Т1 - закаленный иискус­ственно состаренный; М - мягкий; МО - мягкий, отожженный; Н - нагартованный, т.е. пластически деформированный для упрочнения после закалки и естественного старения. Режимы закалки и старения обозначаются после буквы Т: Т1, Т2,..., Т7, например лист Д16АТ. Этот лист плакирован, закален и естественно состарен.Все дуралюмины отличаются пониженной коррозионной стой­костью. Вот почему их всегда защищают либо плакировкой, либо анодированием.Промышленностью выпускаются высокопрочные алюминиевые сплавы.Наиболее широко применяют сплавы В95 и В96. Прочность у сплава В95 δb = 550 МПа, В-96 имеет δb = 630 МПа, Д16 - δb = 440 МПа. Сплавы В95 и В96 относятся к системе Аl - Си - Mg. Кроме указанных компонентов, в сплав В95 добавленZn, а в сплав В96 - еще Сг.Алюминиевые сплавы, применяющиеся для ковки и штамповки и отличающиеся высокой пластичностью при температурах обработки 450 - 475°С, подвергают закалке и старению. Наиболее характерными представителями этой группы являются сплавы АК6 и АК8 (алюми­ний ковкий № 6 или 8). Они относятся к системе Аl - Mg - Si - Си. В сплаве АК8содержится значительно больше меди, чем в АК6. Вот почему для АК8 δb = 440 МПа, в то время как для АК6 δb = 380 МПа.Сплав АК4-1, получающий в настоящее время широкое распрост­ранение, относится к деформируемым алюминиевым сплавам. Однако он обладает еще и свойством жаропрочности, т.е. способностью рабо­тать при температурах до 300 °С без существенных изменений механи­ческих свойств. Жаропрочность этого сплава достигается за счет добавки в сплав Fe,Ni, Ti.Широко применяют деформируемые алюминиевые сплавы, не упрочняемые термической обработкой. К ним относятся сплавы систем Аl - Mg (АМг) и Аl - Мn (АМц). В сплавах АМц содержится 1 - 1,6% марганца. В сплавах АМгсодержится 2 - 6 % магния. Содержа­ние Mg обозначено в марке сплава, например АМгб (6 % Mg). Эта группа сплавов обладает прекрасными технологическими свойствами. Они хорошо деформируются и свариваются.Деформируемые алюминиевые сплавы - основа самолето- и вертолетостроения. Из них изготавливают каркас самолета, вертолета, многие элементы управления, большое число агрегатов, отдельные узлы авиадвигателей. Эти сплавы применяют также в космической технике.Литейные алюминиевые сплавы обладают тем преимуществом, что Вез дорогостоящей, с большими отходами механической обработки можно получить детали самой сложной пространственной формы.В авиастроении широко применяют сплавы А л-9 системы Al-Si-Mg N Л л-19 системы Al-Cu-Mn-Ti. Временное сопротивление сплава Ал-19 достигает 360 МПа. Он обладает устойчивостью против коррозии, Юрошими показателями выносливости.В настоящее время производят группу сложнолегированных литейных алюминиевых сплавов (Ал-20, Ал-21 и др.) системы Al-Cu-Mg с небольшими добавками Ni, Сг, Fe, Ti. Их используют как жароропрочные сплавы для работы при температурах 300 - 350 °С.Широкое распространение получили спеченные алюминиевые сплавы (САС) и спеченные алюминиевые пудры (САП).САС - сплавы, спеченные из легированного алюминиевого по­рошка. Такой порошок может быть изготовлен из легированных алюминиевых сплавов. Порошковые сплавы САС-1 и САС-2 применяют В приборостроении и других отраслях промышленности.CAП - пудры, представляющие собой спеченный алюминий с равномерно распределенными в нем частицами окиси алюминия AI2O3. САП имеет более высокие показатели прочности, жаропрочности и жаростойкости, чем чистый алюминий. Изделия из САП применяют в некоторых узлах самолетов и энергетических атомных установках.