МЫШЕЧНОГО ТОНУСА, ПОЗЫ И ДВИЖЕНИЙ

Новосибирский Государственный медицинский университет

Кафедра нормальной физиологии

РЕГУЛЯЦИЯ

МЫШЕЧНОГО ТОНУСА,

ПОЗЫ И ДВИЖЕНИЙ

  Новосибирск 2007 Человек, как и все на Земле, находится под воздействием её… Вертикальное положение тела (стояние), к примеру, возможно только в том случае, если напряжены мышцы ног,…

Рецепторы двигательных систем

Соответственно можно выделить три основных уровня или «этажа» организации движений: - первый уровень – спинальный - второй уровень – стволовой

Таким образом, в составе скелетных мышц можно выделить 2 группы волокон: экстрафузальные и интрафузальные. Экстрафузальные волокна образуют основную массу мышцы и выполняют всю работу, необходимую для движения и поддержания позы. А интрафузальные волокна – это видоизменённые мышечные волокна, которые входят в состав веретена и выполняют рецепторную функцию.

Каждое интрафузальное волокно состоит из центральной части, которая называется ядерной сумкой, и двух периферических участков, которые имеют поперечную исчерченность и обладают способностью сокращаться.

Мышечные веретёна прикрепляются одним концом к экстрафузальным волокнам мышцы, а другим – к сухожилию мышцы, таким образом, они располагаются в мышце параллельно её экстрафузальным волокнам (рис.2Б). Именно поэтому они будут реагировать на растяжение мышцы, так как при изменении длины мыщцы будет изменяться и длина мышечных веретён.

 

 

 

Рисунок 2. Проприорецепторы

 

В центральной части мышечного веретена, обвивая ядерную сумку в виде спирали, располагаются чувствительные к растяжению нервные окончания сенсорных нейронов. Они служат главным каналом передачи информации об изменении длины мышцы и скорости её удлинения.

Моторную иннервацию экстрафузальных волокон мышцы осуществляют альфа-мотонейроны передних рогов спинного мозга, а иннервацию интрафузальных волокон - гамма-мотонейроны через гамма-эфферентные (g-эфферентные) волокна. Подробнее мы об этом поговорим позже.

Сухожильные рецепторы Гольджи. Эти рецепторы располагаются в зоне соединения мышечных волокон с сухожилием. Сухожильные рецепторы представляют собой инкапсулированные нервные окончания, оплетающие сухожильные пучки коллагеновых волокон в месте перехода в них мышечных волокон (рис.2А,Б).

И мышечные веретёна, и сухожильные рецепторы являются рецепторами растяжения. Однако их расположение в мышце различно: мышечные веретёна соединены с экстрафузальными мышечными волокнами параллельно, а сухожильные органы - последовательно. В результате характер возбуждения этих двух типов рецепторов, особенно во время сокращения, будет различен. Полагают, что мышечные веретёна воспринимают, главным образом, длину мышцы, а сухожильные рецепторы - её напряжение.

Информация от мышечных веретён и сухожильных рецепторов направляется в спинной мозг и вышележащие центры.

После того, как мы познакомились с устройством мышечных рецепторов, целесообразно перейти к изучению механизмов регуляции длины и напряжения мышцы, которые будут рассмотрены совместно с участием спинного мозга, контролирующего эти процессы.

Роль спинного мозга

В регуляции двигательной активности.

Регуляция длины мышцы. Даже в покое скелетные мышцы редко бывают полностью расслаблены, сохраняя некоторое напряжение, не сопровождающееся… В основе тонуса лежит спинномозговой тонический или другое название -…

Обратите внимание на тот факт, что в спинном мозге расположена основная структура – альфа-мотонейроны, аксоны которых являются единственным каналом, соединяющим нервную систему со скелетными мышцами. Только возбуждение альфа-мотонейронов приводит к активации мышечных волокон.

В результате возбуждения альфа-мотонейронов экстрафузальные волокна сокращаются, и растяжение мышцы уменьшается. И наоборот, когда мышца достаточно сократилась, мышечные веретёна, находящиеся в ней, укорачиваются, и импульсация от рецепторов растяжения становится слабее; уменьшается их активирующее влияние на a-мотонейроны, в результате тонус мышцы снижается и её длина возвращается к исходной (рис.3)

 

Рисунок 3. Рефлекторная дуга спинномозгового миотатического (тонического) рефлекса

 

Вы видите, что это своеобразный механизм поддержания длины мышцы, в котором использована обратная связь от мышечных веретён. Этот механизм автоматически компенсирует изменение нагрузки на мышцу.

Силу, с которой мышцы сопротивляются изменению свой длины, можно определить как мышечный тонус. Он позволяет сохранять определенное положение тела или позу. Сила гравитации направлена на растяжение мышц-разгибателей, а их ответное рефлекторное сокращение этому противодействует. Если растяжение разгибателей увеличивается, например, когда на плечи опускается тяжелый груз, то и сокращение усиливается – мышцы не позволяют себя растягивать и благодаря этому сохраняется поза. При отклонениях тела вперёд, назад или в сторону определенные мышцы растягиваются, а рефлекторное повышение их тонуса сохраняет необходимое положение тела.

По тому же принципу осуществляется рефлекторная регуляция длины у мышц-сгибателей. При любом сгибании руки или ноги поднимается груз, которым может быть и сама рука или нога, но любой груз – это внешняя сила, стремящаяся растянуть мышцы. И здесь можно обнаружить, что ответное сокращение регулируется рефлекторно в зависимости от величины груза. В этом легко убедиться на практике: попробуйте перекреститься, а потом повторите эти же движения с пудовой гирей в руке, как это делали силачи в старом российском цирке.

На рис. 3 дуга спинномозгового тонического рефлекса изображена в упрощенном виде. На деле все гораздо сложнее и на рисунке 4 она представлена в полном виде.

 

 

 

Рисунок 4. Регуляция мышечного тонуса на спинальном уровне

 

1 – интрафузальное волокно

2 - ядерная сумка с нервными окончаниями чувствительного нейрона

3 – периферические участки интрафузального волокна

4 – экстрафузальное мышечное волокно

5 – α-мотонейрон спинного мозга

6 – γ- мотонейрон спинного мозга

7 – эфферентный путь от α-мотонейрона к экстрафузальному мышечному волокну

8 - эфферентный путь от γ – мотонейрона к интрафузальному волокну

 

Мы упоминали о том, что интрафузальные волокна имеют свою иннервацию. Она исходит от более мелких нейронов, тоже расположенных в передних рогах спинного мозга - g-мотонейронов. Для чего же служат g-мотонейроны, иннервирующие сам проприорецептор?

1. Повышают чувствительность мышечных веретён к растяжению, что способствует усилению рефлекторной реакции на изменение длины мышцы.Происходит это так: возбуждение гамма-мотонейронов вызывает сокращение интрафузальных волокон мышечного веретена и растяжение капсулы, что в свою очередь вызывает возбуждение расположенных здесь нервных окончаний и поступление от них сигналов к альфа-мотонейронам. Альфа-мотонейроны активируются, и в результате происходит сокращение экстрафузальных волокон мышцы. Активация альфа-мотонейронов через гамма-мотонейроны носит название гамма-петли (гамма-мотонейроны→мышечные веретёна→афферентные нервные окончания→альфа-мотонейроны→мышца) (рис. 5) .

 

 

 

Рисунок 5. Гамма петля (показана пунктиром).

 

Таким образом, альфа-мотонейроны можно возбудить двумя способами: рефлекторно - за счёт естественного растяжения всей мышцы и, как бы принудительно,- за счёт активации с помощью гамма-мотонейронов,

2. Поддерживая импульсацию веретён в укорачивающейся мышце, они препятствуют их полному расслаблению - в этом случае даже в укороченной при сокращении мышце веретёна будут следить за её длиной.

3. Через гамма-мотонейроны вышележащие отделы ЦНС, и в первую очередь ретикулярная формация (РФ) ствола мозга, оказывают влияние на тонус мышц.Сигнал от вышележащих двигательных центров, поступающий к альфа-мотонейронам, одновременно идёт и на гамма-мотонейроны и тем самым возбуждает интрафузальные мышечные волокна, обеспечивающие натяжение рецепторов растяжения.

Можно сказать, что одна из основных задач, выполняемых g-мотонейронами и g-эфферентными волокнами, заключается в настройке чувствительности измерительных приборов (веретён) для того, чтобы они могли работать при самой различной длине мышцы.

Запомните:

Cуществуют два механизма, приводящие к возбуждению мышечных веретён: 1) растяжение мышцы и 2) сокращение интрафузальных волокон (гамма-петля).

При осуществлении сложных двигательных актов происходит одновременная активация a- и g-мотонейронов: активируются a-мотонейроны (обеспечивая само… Регуляция напряжения мышцы: Кроме длины, в работающих мышцах рефлекторно…  

Запомните: В регуляции деятельности каждой мышцы участвуют две регулирующие системы обратной связи: система регуляции длины, роль датчика в которой играют мышечные веретёна, и система регуляции напряжения, датчиками которой служат сухожильные рецепторы.

Длина и напряжение мышцы взаимообусловлены. Если, например, вытянутая вперёд рука ослабит напряжение мышц, то уменьшится раздражение рецепторов Гольджи, а сила тяжести станет опускать руку. Это приведёт к растяжению мышц, нарастанию возбуждения интрафузальных рецепторов и соответствующей активации мотонейронов. В итоге произойдет сокращение мышц и рука вернётся в прежнее положение.

Сухожильные рефлексы названы так потому, что их можно вызвать, легко ударив неврологическим молоточком по сухожилию более или менее растянутой мышцы. От удара такая мышца растягивается и тотчас рефлекторно сокращается. В неврологической практике сухожильные рефлексы используются для оценки состояния соответствующих сегментов спинного мозга. Наиболее известный рефлекс растяжения - коленный, возникает в ответ на кратковременное растяжение четырехглавой мышцы бедра легким ударом по ее сухожилию ниже коленной чашечки. Расслабленная мышца растягивается, а возникшее в связи с этим возбуждение рецепторов мышечных веретён распространяется по рефлекторной дуге к этой же мышце. После короткого латентного периода происходит сокращение мышцы и разгибание конечности (рис. 7).

 

 

Рисунок 7. Схема рефлекторной

дуги коленного сухожильного рефлекса

 

Этот рефлекс отражает состояние III - IV поясничных сегментов спинного мозга, так как именно там расположены центры этого рефлекса. Кроме коленного рефлекса в клинике применяют еще целый ряд подобного рода рефлекторных проб. Например, постукивание в области локтевого сустава вызывает рефлекторное разгибание руки. Растяжению в этом случае подвергается трёхглавая мышца плеча.

Таким образом, самый низкий уровень в организации движения связан с двигательными системами спинного мозга. В спинном мозге имеются альфа-мотонейроны, которые прямо управляют мышцами; располагаются гамма-мотонейроны и вставочные нейроны (интеронейроны), образующие множество контактов с другими нервными клетками. От возбуждения вставочных нейронов зависит, будет ли то или иное движение облегчено или заторможено. На спинальном уровне осуществляется наиболее простая форма автоматического регулирования состояния мышц – рефлекс на растяжение. В его основе лежит обратная связь от мышечных веретён к альфа-мотонейронам спинного мозга.

Управление работой мышц осуществляется не отдельными нейронами, а мотонейронным пулом, который определяет силу и участие в сокращении всех или части волокон каждой мышы. Мотонейронным или двигательным пулом называются мотонейроны, иннервирующие одну мышцу и рассеянные по нескольким сегментам спинного мозга.

Рассмотренные выше механизмы поддержания мышечного тонуса осуществляются на уровне спинного мозга, поэтому такой тонус называется спинальный. Он характеризуется очень слабой выраженностью тонического напряжения мышц и не может обеспечить поддержание позы животного и акт ходьбы. Но он достаточен для осуществления простейших спинальных рефлексов.

Сгибательные и ритмические рефлексы спинного мозга. Двигательные программы спинного мозга.

В моторных системах можно выделить три типа совершаемых движений: рефлекторные, ритмические и произвольные. Они различаются по степени сложности и участия сознания в контроле выполняемых действий. В каждом из них есть два компонента, нуждающиеся в контроле: тонический, который обеспечивает необходимую для начала движения позу и на время фиксирует в стабильном положении некоторые суставы, и фазный, определяющий направление и скорость движения. Рефлекторные движения относятся к самым простым моторным действиям, они выполняются быстро, стереотипно и в принципе не нуждаются в сознательном контроле, т.е. могут возникать непроизвольно. В качестве примера можно привести все сухожильные рефлексы (такие как коленный), а также защитный сгибательный рефлекс, возникающий в ответ на прикосновение к горячему предмету.

Сто человек из ста, нечаянно прикоснувшиеся рукой к сильно нагретому предмету, немедленно согнут её, что уберегает от ещё большего повреждения. Эта стереотипная защитная реакция возникает раньше, чем осознаётся смысл происшедшего. Она обеспечивается врожденным рефлекторным механизмом, в котором участвуют болевые чувствительные окончания, сенсорный нейрон, интеронейроны спинного мозга и мотонейроны мышц-сгибателей. По такому же рефлекторному стереотипу человек, наступивший босой ногой на колючку или острый камешек, немедленно ее сгибает. Это эволюционно древний рефлекс: ведь даже лишённая головного мозга лягушка сгибает лапку, погружённую в кислоту.

Некоторые двигательные рефлексы состоят из повторяющихся ритмических движений. Например, у многих шерстистых животных в ответ на неприятное раздражение кожи паразитами наблюдается почёсывание. Шеррингтон описал чесательный рефлекс у спинальных собак, что указывает на локализацию его центра в спинном мозгу. У спинальных животных были также выявлены локомоторные рефлексы, состоящие в ритмитческой смене сокращений сгибателей и разгибателей на разных лапах, как при ходьбе. И действительно, в спинном мозге обнаружена цепь нейронов, выполняющая функции генератора шагания. Она ответственна за чередование периодов возбуждения и торможения различных мотонейронов и может работать в автоматическом режиме.

Следовательно, простые двигательные стереотипные программы спинной мозг может осуществлять самостоятельно в зависимости от характера сенсорной информации. Он может, например, прервать сгибание пальцев, берущих какой-нибудь предмет, если этот предмет окажется сильно нагретым.

В естественных условиях рефлекторная деятельность спинного мозга координируется вышележащими отделами ЦНС. При лишении связи спинного мозга с головным мозгом путём хирургической перерезки или травмы развивается так называемый «спинальный шок »- временное исчезновение рефлекторных функций спинного мозга. Продолжительность шока определяется филогенетической развитостью головного мозга: у лягушки - несколько минут, у кошки - несколько дней, у человека - несколько месяцев. После травматических разрывов спинного мозга у человека сохраняются рефлексы регуляции мышечной длины и напряжения, защитные сгибательные рефлексы, но локомоторные рефлексы у людей, в отличие от четвероногих, не обнаруживаются. Перейдя к прямохождению, человек был вынужден некоторые полномочия спинного мозга передать головному. Тем не менее, эволюционно старые программы ходьбы и автоматизмы такого рода деятельности сохранились и у него. Например, когда человек идёт, он редко задумывается о чередующихся движениях своих ног, может разговаривать на ходу, а кое-кто ухитряется даже читать. Но, несмотря на это, после травматического разрыва спинного мозга человек становится совершенно беспомощным: он не может совершить ни одного произвольного движения с помощью мышц, которые управляются мотонейронами спинного мозга, расположенными ниже места повреждения. Человек оказывается неспособным координировать мышечный тонус сгибателей и разгибателей и, соответственно, сохранять вертикальную позу и удерживать равновесие, поскольку необходимые для этого нервные центры установочных тонических рефлексов расположены в стволе мозга (мы их рассмотрим позже).

 

Запомните! СПИННОЙ МОЗГ

---является центром тонических рефлексов растяжения, обеспечивающих поддержание длины и ограничение напряжения скелетных мышц;
---создает исходный тонус мышц, который недостаточен, чтобы обеспечить стояние и вертикальное положение головы (“антигравитационную позу”);
---осуществляет простейшие двигательные рефлексы сгибания и разгибания конечностей, шагательные движения;
---является исполнительной структурой по отношению к расположенным выше двигательным центрам, нисходящие влияния которых в конечном итоге сходятся на мотонейронах спинного мозга.

 

ДВИГАТЕЛЬНЫЕ СИСТЕМЫ СТВОЛА МОЗГА

Ствол мозга содержит важные структуры, принимающие участие в регуляции мышечной активности: двигательные ядра черепномозговых нервов, вестибулярные… Двигательные программы стволовых центров сложнее, они обеспечивают более…

ПРОДОЛГОВАТЫЙ МОЗГ В продолговатом мозге расположены вестибулярные ядра, главным из которых является ядро Дейтерса и бульбарная часть ретикулярной формации (РФ). Эти отделы ЦНС получают информацию от вестибулярного аппарата и проприорецепторов мышц. От ядра Дейтерса начинается вестибулоспинальный путь, который осуществляет воздействие на мотонейроны спинного мозга.

Роль продолговатого мозга в регуляции тонуса мышц можно продемонстрировать в опыте с перерезкой ствола мозга между буграми четверохолмия. При этом перерезка отделяет продолговатый мозг от среднего и проходит ниже уровня красных ядер. Эта операция называется децеребрация, а состояние, которое при этом развивается - децеребрационная ригидность (рис. 8).

 

 

Рисунок 8. Децеребрационная ригидность

Это состояние характеризуется резким повышением тонуса мышц-разгибателей. При этом животное (кошка) принимает характерную позу - голова запрокинута, конечности вытянуты, спина и хвост выгнуты. Необходимо приложить большое усилие, чтобы согнуть у такого животного конечности в суставе. Если такое животное поставить так, чтобы лапы служили распорками, оно сможет “стоять”, так как тонус разгибателей настолько возрос, что сгибания в суставах под действием силы тяжести не происходит; однако, тонкая регуляция позы отсутствует и при малейшем толчке животное падает.

Таким образом, мы видим, что усиление тонуса антигравитационных мышц (преимущественно мышц-разгибателей) обеспечивает противодействие гравитации. Однако пока антигравитационная поза еще не является состоянием устойчивого равновесия.

Основной причиной развития децеребрационной ригидности является преобладающее действие ядра Дейтерса на мотонейроны мышц-разгибателей (экстензорных мышц). Доказательством служит устранение ригидности после перерезки мозга ниже продолговатого мозга или разрушения вестибулярных ядер. В норме тонус разгибателей и сгибателей уравновешивается двигательными ядрами ствола мозга, а после перерезки ствола красные ядра среднего мозга, поддерживающие тонус сгибателей, отделяются от спинного мозга и на этом фоне наблюдается стимулирующее влияние вестибулярных ядер на разгибатели. Следовательно, влияние ядра Дейтерса в таком «чистом» виде проявляется при отсутствии влияния красных ядер и вышележащих центров, особенно мозжечка. Вестибулярные ядра находятся под контролем мозжечка.

От вестибулярного аппарата к мозжечку идет прямой вестибулоцеребеллярный путь, по которому мозжечок получает от него всю информацию. Вместе с информацией, идущей от проприорецепторов и от рецепторов кожи, она перерабатывается в коре мозжечка и поступает на ядро шатра мозжечка, откуда вновь идет на вестибулярные ядра, в т.ч. Дейтерса. Не случайно, патология мозжечка проявляется примерно теми же симптомами, что и патология вестибулярного аппарата и вестибулярных ядер - головокружением (субъективным ощущением вращения предметов окружающего мира, которое возникает вследствие «неверной» информации, поступающей в ассоциативные участки коры), нарушением равновесия и возникающим спонтанно нистагмом глазных яблок.

 

 

 

Запомните! ПРОДОЛГОВАТЫЙ МОЗГ

---усиливает спинномозговые тонические рефлексы преимущественно мышц разгибателей и тем самым обеспечивает антигравитационную позу;
---является центром статических рефлексов позы (см. далее).  

СРЕДНИЙ МОЗГ. В состав этого отдела ЦНС входят красные ядра, чёрная субстанция и мезенцефалическая часть РФ. Нейроны красного ядра получают информацию от коры головного мозга, мозжечка и, таким образом, красное ядро получает всю информацию о положении тела в пространстве, о состоянии мышечной системы и кожи. Мы только что установили, что при отделении красных ядер от продолговатого мозга развивается состояние децеребрационной ригидности. При сохранении влияния красных ядер двигательная активность нарушается не так глубоко, как при децеребрационной ригидности: животное способно самостоятельно стоять, ригидность у него выражена слабее. Раздражение красных ядер вызывает активное сгибание (флексию) в конечностях. Следовательно, нейроны красного ядра через руброспинальный тракт оказывают влияние на альфа-мотонейроны спинного мозга, причем, в отличие от нейронов вестибулярного ядра, они преимущественно вызывают активацию альфа-мотонейронов сгибателей и тормозят активность альфа-мотонейронов разгибателей. Благодаря этому красные ядра вместе с вестибулярными ядрами, тоническую активность которых они «уравновешивают», участвуют в регуляции позы. Под влиянием красных ядер тонус мышц становится пластичным, поскольку создается возможность его перераспределения.

Чёрная субстанция среднего мозга функционально связана с базальными ганглиями и будет рассмотрена в соответствующем разделе.

 

Запомните! СРЕДНИЙ МОЗГ:

---усиливает активность мотонейронов и тонус мышц сгибателей и тормозит мышц разгибателей;
---создает возможность нормального распределения мышечного тонуса благодаря его перераспределению между флексорными и экстензорными группами мышц;
---является центром установочных рефлексов   статических выпрямительных статокинетических рефлексов рефлексов   см. далее.

 

Мы упоминали, что в регуляции тонуса принимает участие ретикулярная формация ствола мозга. РФ – это структура, идущая в ростральном (к коре) направлении от спинного мозга к таламусу. Помимо участия в обработке сенсорной информации (неспецифический канал) РФ выполняет и функции двигательной системы. Обнаружено, что имеется два скопления нейронов РФ, причастных к этому: это нейроны продолговатого мозга и нейроны моста. Нейроны РФ продолговатого мозга ведут себя точно так же, как и нейроны красного ядра: они активируют альфа-мотонейроны сгибателей и тормозят альфа-мотонейроны разгибателей. Нейроны РФ моста, наоборот, действуют, как нейроны вестибулярных ядер.

Ретикулярная формация, подобно вестибулярным и красным ядрам, получает информацию от коры мозга и тесно связана с мозжечком: часть информации от мозжечка идет к нейронам продолговатого мозга, а от ядра шатра – к нейронам моста. Поэтому РФ также принимает участие в регуляции позы. Через ретикулоспинальные пути она оказывает нисходящие как облегчающие, так и тормозные влияния на мотонейроны спинного мозга.

Все двигательные системы ствола мозга по их влиянию на мышцы можно условно разделить на два класса: флексорные системы, повышающие активность сгибателей – это нейроны красного ядра и РФ продолговатого мозга и экстензорные системы – нейроны вестибулярных ядер и нейроны РФ моста.

Стволовые рефлексы или программы обеспечивают деятельность мышц, направленную на поддержание позы и сохранение равновесия в покое и во время движения: их называют, соответственно,статические и статокинетические рефлексы (иногда эти рефлексы называются установочные тонические рефлексы или рефлексы положения).

Эти рефлексы направлены на перераспределение мышечного тонуса, в результате чего сохраняется удобная для животного и человека поза или происходит возвращение в эту позу из «неудобной» (соответственно рефлексы позы и выпрямительные рефлексы), а также сохраняется равновесие при ускорении (статокинетические рефлексы). Перераспределение мышечного тонуса происходит, прежде всего, в соответствии с характером информации, поступающей от вестибулярных рецепторов, которые реагируют на изменение положения головы и на различные виды ускорений. Сообщения от вестибулярных рецепторов подкрепляются сигналами от проприорецепторов шейных мышц. Предварительное перераспределение мышечного тонуса повышает устойчивость дальнейших действий. Так, например, гимнасту, выполняющему стойку на кистях рук, проще сохранить равновесие, отклонив голову назад, поскольку при таком положении головы повышается тонус разгибателей, в том числе мышц спины. А вот акробатический прыжок в группировке, напротив, облегчается наклоном головы вперед, что приводит к повышению тонуса сгибателей.

Сохранение позы представляет собой самостоятельную задачу, но позные реакции являются обязательным компонентом, фоном при выполнении других движений. Роль жесткой, фиксированной системы рефлексов положения состоит в том, что она «даёт в руки» высшему уровню управления движениями готовые механизмы, которые могут быть использованы для регуляции позы во время выполнения любых движений. Обратите внимание на то, что двигательные структуры спинного мозга и ствола, в дополнение к рефлекторным движениям участвуют в формировании ритмических движений, таких, например, как ходьба, бег, жевание. Эти движения относительно стереотипны и при определенных условиях они выполняются почти автоматически.

В реализации статических и статокинетических рефлексов участвуют нейроны вестибулярных и красных ядер, а также ретикулярной формации.

Рефлексы положения или установочные тонические рефлексы впервые подробно были описаны Р.Магнусом (1924 год), поэтому они называются «рефлексы Магнуса».

Обратитесь к схеме 1, и почитайте пояснения.

Рефлексы при вращении тела
Рефлексы подъема и спуска
Выражаются в последовательном восстановлении нормального положения головы и всего тела в пространстве.
Проявляются в перераспределении мышечного тонуса разгибателей и сгибателей, предотвращающем нарушение равновесия.
Лабиринтные рефлексы
Шейно-сухожильные рефлексы
Выражаются: в изменении тонуса мышц головы и глаз (нистагм), а также туловища и конечностей.
Выражаются: при подъеме - в сгибании и последующем разгибании конечностей; при спуске - в обратной последовательности.
Выражается: в принятии конечностями положения, способного поддерживать тяжесть тела при встрече с землей.
Рефлексы выпрямления Возникают при нарушении нормальной позы и смещении центра тяжести тела. Они возникают в результате раздражения проприорецепторов мышц и сухожилий шеи, рецепторов вестибулярного аппарата, рецепторов кожи туловища, проприорецепторов мышц туловища, а также рецепторов сетчатки глаза.
Рефлексы позы Возникают при изменении положения головы по отношению к туловищу. В результате этого смещается центр тяжести тела. Это приводит к раздражению: проприорецепторов мышц и сухожилий шеи, рецепторов отолитового аппарата, рецепторов кожи.
Статические рефлексы (вызываются действием силы тяжести) Направлены: А) На сохранение нормаль ной позы при угрозе ее нарушения; Б) На восстановление нормальной позы при нарушении
Статокинетические рефлексы (вызываются угловыми и прямолинейными ускорениями) Направлены на сохранение нормальной позы при криволинейном и прямолинейном движении. Возникают соответственно с полукружных каналов и отолитового аппарата.
Установочные тонические рефлексы  
Рефлексы при прямолинейном движении (в вертикальном направлении)
Рефлекс приземле-ния
.

 

 

 


Статические рефлексы делятся на рефлексы позы и выпрямительные рефлексы.

Выпрямительные рефлексы проявляются в том, что животное или человек из «непривычного», несвойственного для него положения переходит в естественное…   Рисунок 9. I – выпрямительный рефлекс – переход в стоячее положение, II и III - статокинетические рефлексы: а-и –…

МОЗЖЕЧОК

И ЕГО РОЛЬ В РЕГУЛЯЦИИ ПОЗЫ И ДВИЖЕНИЯ.

Мозжечок не имеет прямых выходов на мотонейроны спинного мозга, он оказывает своё влияние через центры ствола мозга и конечный мозг. Принцип работы мозжечка заключается в следующем: к нему поступает обширная… Многие авторы отождествляют мозжечок с мощным процессором, в котором перерабатывается огромная информация. Полагают,…

Запомните: Нейроны Пуркинье (их приблизительно 15 миллионов) интегрируют сведения о текущем состоянии различных компонентов моторных систем. Тормозной выход из коры мозжечка на ядра мозжечка является конечным и единственным результатом деятельности мозжечка.

В соответствии с функциями, которые выполняет мозжечок, многие исследователи делят его на 3 части. Принцип деления у различных авторов свой. Наиболее распространённым является деление мозжечка на 3 части: архиоцеребеллум (древний мозжечок или вестибулоцеребеллум), палеоцеребеллум (старый мозжечок) и неоцеребеллум (новый мозжечок). Р. Щмидт и Г. Тевс (1966), например, придерживаются другого деления: они предлагают разделить мозжечок продольными линиями на три части: внутреннюю (червь мозжечка), среднюю и латеральную; это примерно соответствует по функции делению на архио-, палео-, и неоцеребеллум. Есть и другое деление на вестибулоцеребеллум, спиноцеребеллум и цереброцеребеллум (рис. 10). Деление мозжечка на разные функциональные отделы не противоречит одно другому, а лишь дополняет друг друга, подчёркивая сложность функций этого отдела мозга. Кора архиоцеребеллума, или внутренняя часть, связана с ядром шатра. Это ядро регулирует активность вестибулярных ядер. Изменяя активность нейронов вестибулярных ядер, мозжечок влияет на равновесие тела и сохранение позы. Ядро шатра влияет и на нейроны РФ.

Функция палеоцеребеллума или средней части - это взаимная координация позы и целенаправленного движения, а также координация выполнения сравнительно медленных движений на основе механизма обратной связи. Эта функция реализуется с участием двух ядер мозжечка - пробковидного и шаровидного. Они влияют на деятельность красного ядра и РФ продолговатого мозга. Эта часть мозжечка работает на основании информации, поступающей от мышечных рецепторов и двигательной коры. Функция коррекции медленных движений имеет большое значение в процессе обучения, но она не может использоваться при выполнении быстрых и очень сложных движений.

Неоцеребеллум или латеральная часть мозжечка - играет важную роль в программировании сложных движений, выполнение которых идёт без использования механизма обратных связей. Информация в неоцеребеллум поступает от ассоциативных зон коры (формирующих замысел движения). Вначале она доставляется в нейроны моста и оттуда уже поступает в неоцеребеллум. От нейронов коры мозжечка информация идет на зубчатое ядро, а от него направляется через таламус к двигательной коре, откуда она поступает к красному и вестибулярному ядру, и по пирамидному пути к альфа-мотонейронам спинного мозга. В итоге становится возможным выполнение целенаправленного движения, выполняемого с большой скоростью, при этом сохраняется равновесие тела.

Клетки ядер мозжечка ведут себя как обычные переключательные нейроны: в ответ на поступающую афферентную информацию они активируются и отправляют эфферентные сигналы двигательным ядрам ствола мозга. Кора мозжечка контролирует характер этих сигналов: нейроны Пуркинье разрешают одни и подавляют другие проявления активности клеток ядер мозжечка, В результате одни моторные программы разрешаются, а другие – поправляются, либо отменяются.

Запомните:

Ядра мозжечка находятся под влиянием тормозных нейронов Пуркинье. Когда активность этих нейронов возрастает, влияние ядер мозжечка на стволовые структуры (вестибулярное ядро, красное ядро) уменьшается. Когда активность нейронов Пуркинье снижается, снимается их тормозное действие на ядра мозжечка и тем самым мозжечок более активно влияет на функции стволовых структур.

Следовательно, мозжечок постоянно получает информацию о планирующихся движениях от коры, о положении головы и глаз и о тонусе мышц, необходимом для совершения движения,- от двигательных центров ствола, а от спинного мозга к нему поступают сведения о характере уже совершаемых движений. Располагая всей полнотой информации о движении – от замысла до исполнения, мозжечок постоянно сравнивает: совпал ли замысел с исполнением? При появлении ошибок, т.е. при несоответствии хода движения намеченному плану, мозжечок моментально исправляет ошибки. Он может вносить коррективы как в двигательную программу, благодаря своим связям с моторной корой, так и в исполнение движения, действуя на двигательные центры ствола и нисходящие пути. Таким образом, мозжечок может вмешиваться во все локомоторные процессы организма.

При выполнении запрограммированных движений выходная активность нейронов зубчатых ядер мозжечка регистрируется приблизительно на 10 миллисекунд раньше, чем она обнаруживается в моторной коре. Это опережение имеет особое значение при выполнении быстрых движений, когда исправлять ошибку, по ходу самого движения, просто нет времени. По-видимому, такие движения должны программироваться заранее и мозжечок помогает другим двигательным центрам избрать самую рациональную последовательность активации нейронов, при которой необходимые движения будут выполнены максимально точно, а лишние движения не состоятся. Сам мозжечок не может инициировать движение, он лишь выравнивает баланс между противодействующими мышцами; его участие особенно необходимо в заключительной стадии движений. Так, например, при мозжечковом поражении пациент промахивается, когда его просят быстро прикоснуться к кончику своего носа указательным пальцем.

 

Последствия повреждения или удаления мозжечка.

В связи с вышеуказанным значением мозжечка в организации движений становятся понятными те нарушения моторики, которые сопровождают его повреждения. При поражении мозжечка опухолью или разрушении его структур при рассеянном склерозе больные не парализованы и у них не нарушена моторная чувствительность.

Однако у таких больных появляются симптомы, характеризующие аномальное выполнение движений, исчезает координация движений, согласованность между их отдельными компонентами, согласованность между движением и сохранением позы. То же самое можно сказать о животных, которым произведено удаление мозжечка.

Поражение или удаление мозжечка не вызывает выпадения какого-либо класса движений или паралича двигательной активности, при этом происходит лишь нарушение координации движений, рассогласование работы отдельных мышц или групп мышц, чрезмерное усиление или ослабление движений, исчезновение сопряжения между выполняемым движением и позой. Последствия поражений мозжечка зависят от того, какая его часть пострадала (рис.11).

 

 

Рисунок 11. Характер движений после удаления мозжечка

 

Пояснения:

Дисметрия - утрата соразмерности движений, что особенно наглядно проявляются при совершении целенаправленных движений, когда конечность либо не достигает цели, либо проносится мимо нее;

Атаксия - нарушение точности и координации движений;

Астазия - нарушение равновесия, качательные движения при стоянии;

Асинергия - нарушение содружественных движений. Целостное движение состоит не из одновременных содружественных актов, а из последовательного ряда простых движений. Так, например, касание кончика носа мозжечковый больной осуществляет в три приема (сначала опускает руку, затем сгибает ее в локте и только после этого подносит палец к носу);

Адиадохокинез - неспособность быстро и равномерно выполнять противоположеные движения, например, быстро поворачивать руку то ладонью вверх, то ладонью вниз;

Деэквлибрация - нарушение равновесия (выявляется проведением пробы Ромберга, с помощью которой проверяется способность удерживать равновесие при закрытых глазах, когда ноги поставлены пятками вместе, а руки вытянуты вперед);

Дизартирия - расстройство артикуляции. Речь становится медленной, невыразительной, монотонной.

Следует отметить, что у млекопитающих, перенесших травму мозжечка, со временем наступает довольно эффективная компенсация его функций, что, по всей вероятности, осуществляется за счет высокой пластичности систем регуляции движений.

Запомните: МОЗЖЕЧОК:

---участвует в регуляции позы, мышечного тонуса и равновесия;
---осуществляет координацию целенаправленных движений с рефлексами поддержания позы; ---осуществляет исправления (при необходимости) медленных движений в ходе их выполнения
---производит координацию быстрых целенаправленных движений, осуществляемых по команде из коры больших полушарий, таких как бег, прыжки, игра на фортепьяно и даже речь ;
---является хранилищем центральных двигательных программ. Мозжечок обучается различным программам движения, а затем сохраняет их. В нем хранятся программы сложных и автоматически выполняемых двигательных актов. Он также корректирует выполнение двигательных программ.  

РОЛЬ БАЗАЛЬНЫХ ГАНГЛИЕВ

В ФОРМИРОВАНИИ ТОНУСА И ДВИЖЕНИЙ.

Базальные ганглии - это крупный комплекс ядер, расположенных под корой больших полушарий в глубине мозга (рис. 12).   Рисунок 12. Расположение базальных ганглиев в больших полушариях мозга

Последствия повреждений базальных ганглиев

Таким образом, можно констатировать, что потеря дофамиеэргических нейронов чёрной субстанции приводит к тяжелому поражению всей двигательной… Для лечения болезни Паркинсона стали использовать предшественник синтеза… При поражении нейронов хвостатого ядра и скорлупы, использующих в качестве медиаторов ГАМК или ацетилхолин, баланс…

РОЛЬ КОРЫ БОЛЬШИХ ПОЛУШАРИЙ

«Третий этаж» или уровень регуляции движений - это кора больших полушарий, которая организует формирование программ движений и их реализацию в… Корковое управление движениями возможно лишь при одновременном участии всех… Сейчас уже многое известно о функциях моторной коры. Её рассматривают как центральную структуру, управляющую самыми…

Мы рассмотрели роль каждого отдела ЦНС в регуляции работы скелетных мышц. Их сложное взаимодействие можно охарактеризовать двумя словами - иерархия и партнёрство.

Простые движения (например, скачкообразные движения глаз или быстрые движения конечностей) выполняются практически без проприоцептивной обратной связи по жесткой генетически закрепленной программе. Любое же сложное движение требует предварительного программирования. Наличие связей между центрами организации движений позволяет создать и реализовать специальную программу управления движениями.

Интегративная деятельность моторных структур ЦНС

По организации сложных произвольных движений

Для удовлетворения своих потребностей в условиях постоянного изменения условий внешней среды организму необходимо ставить перед собой определённые задачи и в своей поведенческой деятельности добиваться намеченного результата.

Произвольные движения – это сложные комбинированные действия, такие, например, как игра на музыкальном инструменте, управление автомобилем или приготовление пищи. Их отличительными особенностями являются направление движений к определённой цели и совершенствование координации в связи с приобретаемым опытом. Для их выполнения требуется интегративная деятельность моторных структур ЦНС.

Каждому целенаправленному движению предшествует формирование программы. В реализацию программы будущего движения включаются все этажи моторных центров ЦНС, начиная от двигательных областей коры больших полушарий до мотонейронов спинного мозга. Чем сложнее движение, тем больше моторных центров его организуют. Таким образом, система регуляции движений, как правило, является многоуровневой. Между отдельными уровнями (этажами), отдельными центрами возникают сложные иерархические взаимодействия. Большое значение для воплощения программы в конкретный результат принадлежит обратной связи (обратной афферентации), с помощью которой в центры программы действия поступает информация о характере выполненной реакции (правильно, неправильно, достаточно, недостаточно и т.д.). Результат сличения двигательной программы с информацией о движении, передающийся по системе обратной связи, является основным фактором перестройки программы, и в случае необходимости в программу вносится корректировка.

Двигательная команда определяет, как будет осуществляться запрограммированное движение, т.е. каким будет распределение во времени тех эфферентных импульсов, которые направятся к мотонейронам спинного мозга и вызовут активацию различных мышечных групп. Одна и та же двигательная программа может быть выполнена с помощью разного набора элементарных движений мышц (например, взять предмет можно левой или правой рукой).

ЦНС располагает некоторым числом генетически закрепленных двигательных программ (например, программа шагания, базирующаяся на активности спинального генератора шага; программы ходьбы, бега). Такие простые стереотипные программы объединяются в более сложные системы типа поддержания вертикальной позы. Подобное объединение происходит в результате обучения, которое обеспечивается благодаря участию передних отделов коры больших полушарий. При выполнении сложных движений, если в этом есть необходимость, в программу включаютя уже готовые блоки рефлексов нижележащих отделов ЦНС, которые под влиянием вышележащих центров могут усиливаться. Врожденные программы – ползания, ходьбы, бега реализуются у человека не сразу после рождения, а по мере созревания мозговых структур. Приобретённые же программы формируются в процессе индивидуальной жизни.

Самой сложной и филогенетически самой молодой является способность формировать последовательность движений и предвидеть ее реализацию. Решение этой задачи связано с фронтальной ассоциативной системой, которая запоминает и хранит в памяти такие последовательности движений. Высшим отражением этого кодирования у человека является вербализация, или словесное сопровождение, основных понятий движения.

В организации произвольного целенаправленного движения можно выделить следующие этапы его реализации:

1. побуждение к действию (драйв, мотивация)- субъективно это воспринимается как двигательная мотивация – стремление к удовлетворению какой-либо доминирующей потребности (пищевой, оборонительной, половой, трудовой, творческой);

2. замысел действия

3. реализация замысла

4. регуляция позы при выполнении данного действия.

Для того чтобы выполнить эти функции, необходимо, чтобы в мозге возник:

§ план (цель действия или поведения)

§ программа действия (тактика движения). Тактическое планирование движения непосредственно представлено в блоке программ. На этом этапе решается вопрос: как будет выполняться движение, как будет достигнута цель поведения, с помощью каких двигательных ресурсов, способов действия - так как каждое движение можно выполнить по-разному, используя богатые возможности опорно-двигательного аппарата. Собственно программа действия – это зафиксированная последовательность сокращений и расслаблений определенных мышечных групп) и, наконец,

§ конкретная реализация (исполнение) программы.

План организации двигательной системы приведен на рис16.

Распределение обязанностей между структурами мозга выглядит примерно так: план формируется в мотивационных зонах коры и в подкорковых структурах мозга, в том числе и в лимбической системе. Программа действия отбирается из массива имеющихся, или создается новая – с участием ассоциативной и двигательной коры, базальных ганглиев, мозжечка и таламуса. Конкретное же выполнение программы осуществляется мышцами под непосредственным контролем со стороны спинного мозга и стволовых структур за счет активации соответствующих двигательных единиц. Выбор конкретной двигательной программы, как правило, определяется наиболее значимой сенсорной информацией и чаще всего состоит в предпочтении наиболее эффективного действия.

 

Рисунок 16. Общий план организации двигательной системы

 

Программы целевых двигательных актов широко представлены в различных структурах мозга. ЦНС хранит центральные двигательные программы как врожденных, так и выработанных действий и навыков. Механизм программного управления используется не только для этих целей, но и для осуществления произвольных и быстрых баллистических движений, например, некоторых движений в спорте, требующих большой скорости. Такие движения производятся настолько быстро, что использовать обратные сенсорные связи для их управления нецелесообразно.

Целенаправленные движения связаны с работой позных механизмов как при подготовке к движению, так и при коррекции позы во время или после выполнения движения. Тесная взаимосвязь между позными и целенаправленными функциями - фундаментальное свойство двигательной системы.

Регуляция целенаправленных движений - это большая самостоятельная глава, изложить которую в кратком пособии не представляется возможным, поэтому механизмы управления автоматизированными, запрограммированными движениями, механизмы выработки двигательных навыков (спортивных, профессиональных и других) нами не рассматривались.

 


З А К Л Ю Ч Е Н И Е

Непосредственным распорядителем активности мышц являются мотонейроны спинного мозга. Их функциональное объединение с интеронейронами (вставочными… В любой низшей моторной системе, как в картотеке, содержатся программы всех… Контролирующие моторные действия структуры мозга организованы по иерархическому принципу с постепенным увеличением…

Возрастные особенности регуляции позы, мышечного тонуса и движений

У новорожденных сохраняется флексорная гипертония новорожденных, характерное для плода преобладание тонуса мышц-сгибателей. Это проявляется в… Гипертонус мышц-сгибателей в первые месяцы жизни обусловлен повышенным тонусом… В возрасте 3-5 месяцев наблюдается нормотония - устанавливается равновесие мышц-антогонистов.