В результате получаем связь между Еп и F, в векторной форме ее записывают сокращенно в виде

,

где используют математический символ для вектора, который называется градиентом скаляр­ной величины Еп и обозначается grad (Еп).

2.9. Закон сохранения и превращения энергии в механике. @

В 1748 г. М.В.Ломоносов сформулировал закон сохранения материи и движе­ния. Через 100 лет Р.Майер и Г.Гельмгольц дали количественную формулировку за­кона сохранения и превращения энергии.

В замкнутой системе энергия может пе­реходить из одних видов в другие и передаваться от одного тела другому, но об­щее количество энергии остается неизменным. В природе и технике постоян­но имеют место превращения одних видов энергии в другие. Например, в электро­двига­телях электрическая энергия переходит в механическую, в ядерном реакторе ядерная энергия переходит в тепловую, затем в механическую и электромагнитную, при фо­тоэффекте - электромагнитная в электрическую и т.д. Однако следует иметь в виду, что одновременно может происходить несколько типов превращений энергии, например, обычно некоторая часть энергии непременно пре­вращается во внутреннюю (тепловую) энергию вещества (в энергию теплового движения молекул). Но всегда общий запас энергии системы в любой момент времени оста­ется неизменным. Закон сохранения и взаимопревращения энергии является всеобщим законом природы, не имеющим исключений; если он как бы нарушается в эксперименте, значит что-то не учтено.

Закон сохранения механической энергии формулируется следующим об­ра­зом: Если в замкнутой системе действуют консервативные силы, то механи­ческая энергия не переходит в другие виды и остается постоянной во времени (при этом возможен переход потенциальной энергии в кинетическую и наоборот) .

Продемонстрируем действие этого закона на примере свободного падения тела.

Пример: Пусть тело массой m начинает падать вниз с высоты h.

Рассчитаем его механическую энергию в различные моменты времени. В начальный момент времени, в верхней точке его механическая энергия равна mgh (Ек =0 так как начальная скорость равна нулю).

Если не учитывать силы трения о воздух, то в любой следующий момент времени t координату и скорость тела можно рассчитать с помощью законов кинематики для равноускоренного движения с ускорением свободного падения g (см. рис.2.12): z = h ‑ gt2/2, v = ‑ gt.

Механическая энергия в этот момент времени будет равна

Ем = Еп + Ек = mgz + mv2/2 = mg(h – gt2/2) + m(gt)2/2 = mgh, т.е. равна энергии в начальный момент времени. Отсюда видно, что механическая энергия не меняется со временем. Если же рассматривать и действие сил трения, то окажется, что механическая энергия тела при движении уменьшается. Это объясняется частичным превращением ее во внутреннюю (тепловую) энергию воздуха и самого тела.

 

3. ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ. @

3.1. Основные характеристики динамики вращательного движения. @

Для описания вращательного движения используются следующие па­раметры : момент инерции J, момент силы , момент импульса тела. Ана­ло­гами их в поступательном движении являются масса m, сила , импульс тела .