рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Замедлители

Замедлители - раздел Химия, Ядерная энергетика Замедлители. Замедлитель Служит Для Уменьшения Энергии Нейтронов, Испу...

Замедлители.

Замедлитель служит для уменьшения энергии нейтронов, испускаемых в процессе деления, примерно от 1 МэВ до тепловых энергий около 0,025 эВ. Поскольку замедление происходит главным образом в результате упругого рассеяния на ядрах неделящихся атомов, масса атомов замедлителя должна быть как можно меньше, чтобы нейтрон мог передавать им максимальную энергию. Кроме того, у атомов замедлителя должно быть мало по сравнению с сечением рассеяния сечение захвата, так как нейтрону приходится многократно сталкиваться с атомами замедлителя, прежде чем он замедляется до тепловой энергии.

Наилучшим замедлителем является водород, поскольку его масса почти равна массе нейтрона и, следовательно, нейтрон при соударении с водородом теряет наибольшее количество энергии. Но обычный легкий водород слишком сильно поглощает нейтроны, а потому более подходящими замедлителями, несмотря на несколько большую массу, оказываются дейтерий тяжелый водород и тяжелая вода, так как они меньше поглощают нейтроны.

Хорошим замедлителем можно считать бериллий. У углерода столь малое сечение поглощения нейтронов, что он эффективно замедляет нейтроны, хотя для замедления в нем требуется гораздо больше столкновений, чем в водороде. Среднее число N упругих столкновений, необходимое для замедления нейтрона от 1 МэВ до 0,025 эВ, при использовании водорода, дейтерия, беррилия и углерода составляет приблизительно 18, 27, 36 и 135 соответственно. Приближенный характер этих значений обусловлен тем, что из-за наличия химической энергии связи в замедлителе столкновения при энергиях ниже 0,3 эВ вряд ли могут быть упругими.

При низких энергиях атомная решетка может передавать энергию нейтронам или изменять эффективную массу в столкновении, нарушая этим процесс замедления. Теплоносители. В качестве теплоносителей в ядерных реакторах используются вода, тяжелая вода, жидкий натрий, жидкий сплав натрия с калием NaK, гелий, диоксид углерода и такие органические жидкости, как терфенил.

Эти вещества являются хорошими теплоносителями и имеют малые сечения поглощения нейтронов. Вода представляет собой прекрасный замедлитель и теплоноситель, но слишком сильно поглощает нейтроны и имеет слишком высокое давление паров 14 МПа при рабочей температуре 336 С. Лучший из известных замедлителей тяжелая вода. Ее характеристики близки к характеристикам обычной воды, а сечение поглощения нейтронов меньше. Натрий является прекрасным теплоносителем, но не эффективен как замедлитель нейтронов.

Поэтому его используют в реакторах на быстрых нейтронах, где при делении испускается больше нейтронов. Правда, натрий имеет ряд недостатков в нем наводится радиоактивность, у него низкая теплоемкость, он химически активен и затвердевает при комнатной температуре. Сплав натрия с калием сходен по свойствам с натрием, но остается жидким при комнатной температуре. Гелий прекрасный теплоноситель, но у него мала удельная теплоемкость. Диоксид углерода представляет собой хороший теплоноситель, и он широко применялся в реакторах с графитовым замедлителем.

Терфенил имеет то преимущество перед водой, что у него низкое давление паров при рабочей температуре, но он разлагается и полимеризуется под действием высоких температур и радиационных потоков, характерных для реакторов. Тепловыделяющие элементы. Тепловыделяющий элемент твэл представляет собой топливный сердечник с герметичной оболочкой. Оболочка предотвращает утечку продуктов деления и взаимодействие топлива с теплоносителем.

Материал оболочки должен слабо поглощать нейтроны и обладать приемлемыми механическими, гидравлическими и теплопроводящими характеристиками. Тепловыделяющие элементы это обычно таблетки спеченного оксида урана в трубках из алюминия, циркония или нержавеющей стали таблетки сплавов урана с цирконием, молибденом и алюминием, покрытые цирконием или алюминием в случае алюминиевого сплава таблетки графита с диспергированным карбидом урана, покрытые непроницаемым графитом.

Все эти твэлы находят свое применение, но для водо-водяных реакторов наиболее предпочтительны таблетки оксида урана в трубках из нержавеющей стали. Диоксид урана не вступает в реакцию с водой, отличается высокой радиационной стойкостью и характеризуется высокой температурой плавления. Для высокотемпературных газоохлаждаемых реакторов, по-видимому, весьма подходят графитовые топливные элементы, но у них имеется серьезный недостаток за счет диффузии или из-за дефектов в графите через их оболочку могут проникать газообразные продукты деления.

Органические теплоносители несовместимы с циркониевыми твэлами и поэтому требуют применения алюминиевых сплавов. Перспективы реакторов с органическими теплоносителями зависят от того, будут ли созданы алюминиевые сплавы или изделия порошковой металлургии, которые обладали бы прочностью при рабочих температурах и теплопроводностью, необходимыми для применения ребер, повышающих перенос тепла к теплоносителю. Поскольку теплообмен между топливом и органическим теплоносителем за счет теплопроводности мал, желательно использовать поверхностное кипение для увеличения теплопередачи.

С поверхностным кипением будут связаны новые проблемы, но они должны быть решены, если использование органических теплоносителей окажется выгодным.

– Конец работы –

Эта тема принадлежит разделу:

Ядерная энергетика

В 1990 атомными электростанциями АЭС мира производилось 16 электроэнергии. Такие электростанции работали в 31 стране и строились еще в 6 странах. … Эти страны производят от четверти до половины своей электроэнергии на АЭС. США производят на АЭС только восьмую часть…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Замедлители

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ЯДЕРНЫЙ ТОПЛИВНЫЙ ЦИКЛ
ЯДЕРНЫЙ ТОПЛИВНЫЙ ЦИКЛ. Атомная энергетика это сложное пpоизводство, включающее множество пpомышленных пpоцессов, котоpые вместе обpазуют топливный цикл. Существуют pазные типы топливных циклов, за

Развитие атомной промышленности
Развитие атомной промышленности. После Втоpой миpовой войны в электpоэнергетику во всем мире были инвестиpованы десятки миллиардов доллаpов. Этот строительный бум был вызван быстрым ростом спроса н

Экономика атомной энергетики
Экономика атомной энергетики. Инвестиции в атомную энеpгетику, подобно инвестициям в дpугие области пpоизводства электpоэнеpгии, экономически опpавданы, если выполняются два условия стоимость килов

Историческая справка
Историческая справка. История открытия деления ядер берет начало с работы А.Беккереля 1852 1908. Исследуя в 1896 фосфоресценцию различных материалов, он обнаружил, что минералы, содержащие уран, са

Первые указания на возможность деления ядер
Первые указания на возможность деления ядер. Ферми принадлежит открытие многих нейтронных реакций, известных сегодня. В частности, он пытался получить элемент с порядковым номером 93 нептуний, бомб

Подтверждение возможности деления
Подтверждение возможности деления. После этого Ферми, Дж. Даннинг и Дж. Пеграм из Колумбийского университета провели эксперименты, которые показали, что деление ядер действительно имеет место. Деле

Разработки в период Второй мировой войны
Разработки в период Второй мировой войны. С 1940 по 1945 направление разработок определялось военными соображениями. В 1941 были получены небольшие количества плутония и установлен ряд ядерных пара

Сырьевые изотопы
Сырьевые изотопы. Имеются два сырьевых изотопа торий-232 и уран-238, из которых получаются делящиеся изотопы уран-233 и плутоний-239. Технология использования сырьевых изотопов зависит от разных фа

Типы реакторов
Типы реакторов. Теоретически возможны более 100 разных типов реакторов, различающихся топливом, замедлителем и теплоносителями. В большинстве обычных реакторов в качестве теплоносителя используется

Реактивность и управление
Реактивность и управление. Возможность самоподдерживающейся цепной реакции в ядерном реакторе зависит от того, какова утечка нейтронов из реактора. Нейтроны, возникающие в процессе деления, исчезаю

Системы безопасности
Системы безопасности. Безопасность реактора обеспечивается тем или иным механизмом его остановки в случае резкого увеличения мощности. Это может быть механизм физического процесса или действие сист

ПЕРСПЕКТИВЫ АТОМНОЙ ЭНЕРГЕТИКИ. ПРОБЛЕМЫ БЕЗОПАСНОСТИ
ПЕРСПЕКТИВЫ АТОМНОЙ ЭНЕРГЕТИКИ. ПРОБЛЕМЫ БЕЗОПАСНОСТИ. Среди тех, кто настаивает на необходимости продолжать поиск безопасных и экономичных путей развития атомной энергетики, можно выделить два осн

Можем ли мы отказаться от ядерной энергетики
Можем ли мы отказаться от ядерной энергетики. По материалам А.Ваганова, НГ-Наука, 2001г. Климатическая катастрофа Ведущим научным сотрудником Института биофизики РАН А.Карнауховым обследован

Список использованной литературы и источников
Список использованной литературы и источников. Дементьев Б.А. Ядерные энергетические реакторы. М 1984 2. Робертсон Б. Современная физика в прикладных науках. М 1985 3. Самойлов О.Б Усынин Г.Б Бахме

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги