Механическая обработка полиэфирных материалов

Механическая обработка полиэфирных материалов. Материалы на основе полиэфирных смол могут подвергаться всем видам механической обработки, хотя это сопряжено с определенными трудностями.

Механический перенос закономерностей процесса резания металлов и рекомендаций по отдельным видам их обработки на процесс резания пластмасс, как показала практика, невозможен, поскольку пластмассы - особая по сравнению с металлами группа материалов, имеющая специфические свойства, обуславливающие особенности процесса их резания.

Детали из полиэфирных материалов при изготовлении прессованием, литьем, формованием изменяют свои размеры и формы вследствие усадки при отверждении и остывании, поэтому обработка резанием является необходимой, широко распространенной и важной операцией в общем технологическом процессе изготовления изделий из этих материалов 11,12,17 . Полиэфирные материалы, как правило, содержат пигменты, наполнители дисперсные и волокнистые, в том числе стекловолокно, что вызывает быстрый износ инструмента. Этому способствует низкая теплопроводность полиэфирной смолы.

При механической обработке полиэфирных материалов предпочтительнее применять резцы из твердых сплавов группы ВК по сравнению со сплавами групп ТК и ТТК. Для твердых сплавов группы ВК с различным содержанием кобальта ВК-3, ВК-4, ВК-6, ВК-8, ВК-10 наибольшая стойкость отмечена при использовании резцов, оснащенных пластинками из ВК-6, что более чем в 4 раза превышает срок службы твердосплавных резцов из ВК-8. Стойкость резцов, оснащенных пластинками из мелкозернистых твердых сплавов ВК6М и ВК60М, в 7-9 раз превосходит стойкость инструмента из ВК-8. Стойкость резцов из быстрорежущей стали Р18 в 2-3 раза меньше, чем из ВК-8 и вольфрамовых сплавов КНТ-20 и ТН-20. Стойкость резцов из быстрорежущей стали можно повысить нитроцементацией, нанесением тонкого поверхностного слоя карбонитридов на установках Булат. При разрезании листов, труб и стержней из стеклопластиков толщиной до 30 мм наибольшая производительность обработки отмечена при использовании алмазных кругов, оснащенных синтетическими алмазами АСВ и АСК зернистостью 400 315 или 250 200. Рекомендуемая скорость резания V 60-65 м с, подача S 6 000-7 000 мм мин. Стойкость алмазных кругов составляет около 50 ч, а с применением охлаждающей среды она увеличивается примерно в 2 раза. Для шлифования пластмасс наиболее пригодны карборундовые круги средней твердости на керамической или бакелитовой связке с размером зерна абразива 0,8-0,5 мм для черновой обработки и 0,25-0,16 мм для чистовой.

Часто применяют также шлифовальную шкурку с теми же размерами зерен абразива.

Окончательную обработку поверхности перед полированием производят шкурками с самыми мелкими абразивными зернами М-20, М-40. Разработаны специальные абразивные круги, которые позволяют повысить производительность шлифования пластмасс.

В качестве абразивного материала в них использовано раздробленное оконное, тарное стекло, а в качестве связки - бакелитовая смола.

Абразивные круги из стеклянных зерен способны самозатачиваться в процессе шлифования. Объясняется это тем, что зерна из стекла имеют худшие механические характеристики, чем электрокорунд и карбид кремния, и легко разрушаются вследствие откалывания от зерен небольших частиц и выкрашивания затупившихся зерен.

Вместо них в работу вступают новые обнажившиеся зерна, и режущие свойства круга поддерживаются на протяжении всего периода стойкости. Внедрение стеклянных абразивных кругов в производство показало, что они по стойкости превосходят металлообрабатывающие в 10-20 раз и дают более низкую шероховатость поверхности. Для получения поверхностей особо высокого качества или придания им стойкости к окружающей среде, применяют полирование, которое придает изделию товарный вид. Полирование производят на полировальных кругах или в барабанах диаметром 500-700 мм, причем используют мягкие и твердые круги.

При работе с твердыми кругами из войлока и фетра исправляют глубокие дефекты риски, царапины, штрихи и т.п. Составляются эти круги из двух прокладочных дисков на каждые три рабочих диска, а их толщина равна 60-100 мм. При работе с мягкими полировальными кругами, детали подвергают окончательному полированию.

Рабочие поверхности кругов покрывают полировальными композициями, основной частью которых являются абразивные материалы - пемза, наждак, карборунд, мел, глина, оксид хрома и др. Полировальные пасты выпускают с абразивами четырех градаций по дисперсности четырех цветов. Самое грубое полирование получено при использовании пасты с абразивом дисперсностью 60-65 мкм паста красного цвета, желтая паста содержит абразив размером 40-45 мкм, зеленая - 30-35мкм и серая паста, самая тонкая, 20-25 мкм. В таблице 6 приведен состав, мас, наиболее часто применяемой шлифовально-полировальной пасты пасты ГОИ . Таблица 6 Состав шлифовально-полировальной пасты ГОИ Грубая Средняя Тонкая Окись хрома 81 76 74 Стеарин 10 10 10 Расщепленный жир 5 10 10 Силикагель 2 2 1,8 Керосин 2 2 2 Сода двууглекислая 0,2 Если после полирования на поверхности изделий остается жирная пленка, то необходимо применять составы для удаления полировальных паст. Составы содержат водные растворы и эмульсии с мягким абразивом, растворители, поверхностно-активные вещества и др. При составлении рецептур полировальных паст необходимо учитывать, что при полировании светлоокрашенных изделий в пасту вводят только светлые компоненты, не оставляющие следов на обрабатываемой поверхности, а для восстановления первоначального цвета в местах обработки можно применять цветные пасты.

Минимальный припуск на полирование 0,12-0,30 мм. Выводы Так, технология изготовления материалов на основе ненасыщенных полиэфирных смол и изделий из них включает следующие операции подготовку сыпучих исходных компонентов подготовку связующего смешение сыпучих компонентов со связующим дегазацию композиционного материала заливку композиционного материала в формы формирование изделия.

Изделия можно получать методом прямого или литьевого прессования при минимальном давлении прессования, так как композиции обладают высокой текучестью.

Используя композицию, можно изготавливать армированные изделия путем пропитки полиамидных, хлопчатобумажных, стеклянных и других тканей, что позволяет получить особо прочные конструкции при сохранении высоких антифрикционных свойств.

Изделия антифрикционного назначения, имеющие цилиндрическую форму, особенно крупногабаритные, целесообразно изготавливать методом центробежного литья при скорости вращения формы 120 - 400 мин -1. Для ускорения процесса формирования изделий форму рекомендуется подогреть до 40 - 800С, для чего можно использовать горячую воду или термошкаф.

Время отверждения композиционных материалов можно изменять в широких пределах. Процесс отверждения идет с выделением тепла, что следует учитывать при изготовлении крупногабаритных изделий во избежания их коробления и растрескивания. Композиционные материалы на основе ненасыщенных полиэфирных смол допускают обработку любыми видами режущего инструмента, что позволяет изготавливать изделия с высокой точностью оформляющих размеров.

Достоинством композиционных материалов такого типа является возможность использования отходов в технологическом цикле. Разработан метод регенерации отходов композиций на основе ненасыщенных полиэфирных смол путем увеличения длительности резиноподобного состояния с последующим измельчением их на вальцах. Измельченные активированные отходы могут быть использованы в качестве наполнителя композиционных материалов, что позволяет в 3 - 5 раз снизить расход связующего и в значительной мере решает проблему утилизации промышленных полимерных отходов.