рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Состав нуклеиновых кислот

Работа сделанна в 2003 году

Состав нуклеиновых кислот - Курсовая Работа, раздел Химия, - 2003 год - Химия наследственности. Нуклеиновые кислоты. ДНК. РНК. Репликация ДНК и передача наследственной информации Состав Нуклеиновых Кислот. Нуклеиновые Кислоты - Это Биополимеры, Макромолеку...

Состав нуклеиновых кислот. Нуклеиновые кислоты - это биополимеры, макромолекулы которых состоят из многократно повторяющихся звеньев - нуклеотидов.

Поэтому их называют также полинуклеотидами. Важнейшей характеристикой нуклеиновых кислот является их нуклеотидный состав. В состав нуклеотида - структурного звена нуклеиновых кислот - входят три составные части азотистое основание - пиримидиновое или пуриновое. В нуклеиновых кислотах содержатся основания 4-х разных видов два из них относятся к классу пуринов и два - к классу пиримидинов.

Азот, содержащийся в кольцах, придает молекулам основные свойства. моносахарид - рибоза или 2-дезоксирибоза. Сахар, входящий в состав нуклеотида, содержит пять углеродных атомов, т.е. представляет собой пентозу. В зависимости от вида пентозы, присутствующей в нуклеотиде, различают два вида нуклеиновых кислот - рибонуклеиновые кислоты РНК , которые содержат рибозу, и дезоксирибонуклеиновые кислоты ДНК , содержащие дизоксирибозу. остаток фосфорной кислоты.

Нуклеиновые кислоты являются кислотами потому, что в их молекулах содержится фосфорная кислота. Нуклеотид - фосфорный эфир нуклеозида. В состав нуклеозида входят два компонента моносахарид рибоза или дезоксирибоза и азотистое основание. В конце 40-х - начале 50-х годов, когда появились такие методы исследования, как хроматография на бумаге и УФ-спектроскопия, были проведены многочисленные исследования нуклеотидного состава НК Чаргафф, А. Н. Белозерский. Полученные данные позволили решительно отбросить старые представления о нуклеиновых кислотах, как о полимерах, содержащих повторяющиеся тетрануклеотидные последовательности так называемая тетрануклеотидная теория строения ПК, господствовавшая в 30-40-е годы, и подготовили почву для создания современных представлений не только о первичной структуре ДНК и РНК, но и об их макромолекулярной структуре и функциях. Метод определения состава ПК основан на анализе гидролизатов, образующихся при их ферментативном или химическом расщеплении.

Обычно используются три способа химического расщепления НК. Кислотный гидролиз в жестких условиях 70 -ная хлорная кислота, 100 С, 1ч или 100 -ная муравьиная кислота, 175 C, 2 ч, применяемый для анализа как ДНК, так и РНК, приводит к разрыву всех N-гликозидных связей и образованию смеси пуриновых и пиримидиновых оснований.

При исследовании РНК могут использоваться как мягкий кислотный гидролиз 1 н. соляная кислота, 1OO C, 1 ч, в результате которого образуются пуриновые основания и пирамидиповые нуклеозид-2 3 -фосфаты, так и щелочной гидролиз 0,3 н. едкий кали, 37 С, 20 ч, дающий смесь нуклеозид -2 3 -фосфатов.

Поскольку в НК число нуклеотидов каждого вида равно числу соответствующих оснований, для установления нуклеотидного состава данной НК достаточно определить количественное соотношение оснований. Для этой цели из гидролизатов с помощью хроматографии на бумаге или электрофореза когда в результате гидролиза получают нуклеотиды выделяют индивидуальные соединения.

Каждое основание независимо от того, связано оно с углеводным фрагментом или нет, обладает характерным максимумом поглощения в УФ, интенсивность которого зависит от концентрации. По этой причине, исходя из УФ-спектров выделенных соединений, можно определить количественное соотношение оснований, а следовательно, и нуклеотидный состав исходной НК. При количественном определении минорных нуклеотидов, особенно таких неустойчивых, как дигидроуридиловая кислота, пользуются ферментативными методами гидролиза ФДЭ змеиного яда и селезенки. Использование описанных выше аналитических приемов показало, что ПК различного происхождения состоят за редким исключением из четырех основных нуклеотидов и что содержание минорных нуклеотидов может меняться в значительных пределах.

Как будет показано далее, при изучении нуклеотидного состава ДНК были получены данные, которые помогли установить ее пространственную структуру. 3.2. Значение нуклеиновых кислот Значение нуклеиновых кислот очень велико.

Особенности их химического строения обеспечивают возможность хранения, переноса в цитоплазму и передачи по наследству дочерним клеткам информации о структуре белковых молекул, которые синтезируются в каждой клетке. Белки обусловливают большинство свойств и признаков клеток. Понятно поэтому, что стабильность структуры нуклеиновых кислот - важнейшее условие нормальной жизнедеятельности клеток и организма в целом.

Любые изменения строения нуклеиновых кислот влекут за собой изменения структуры клеток или активности физиологических процессов в них, влияя таким образом на жизнеспособность. Существует два типа нуклеиновых кислот ДНК и РНК. РНК рибонуклеиновая кислота, так же как ДНК, представляет собой полимер мономерами которого служат нуклеотиды. Азотистые основания те же самые, что входят в состав ДНК аденин, гуанин, цетозин четвертое - урацил - присутствует в молекуле РНК вместо тимина.

Нуклеотиды РНК содержат вместо дизоксирибозы другую пентозу - рибозу. 4. ДНК 4.1. Состав ДНК ДНК дезоксирибонуклеиновая кислота - биологический полимер, состоящий из двух полинуклеотидных цепей, соединенных друг с другом. Мономеры, составляющие каждую из цепей ДНК, представляют собой сложные органические соединения, включающие одно из четырех азотистых оснований аденин А или тимин Т , цитозин Ц или гуанин Г пятиатомный сахар пентозу - дезоксирибозу, по имени которой получила название и сама ДНК, а также остаток фосфорной кислоты.

Эти соединения носят название нуклеотидов. В каждой цепи нуклеотиды соединяются путем образования ковалентных связей между дезоксирибозой одного и остатком фосфорной кислоты последующего нуклеотида. Объединяются две цепи в одну молекулу при помощи водородных связей, возникающих между азотистыми основаниями, входящими в состав нуклеотидов, образующих разные цепи. Исследуя нуклеотидный состав ДНК различного происхождения, Чаргафф обнаружил следующие закономерности. 1. Все ДНК независимо от их происхождения содержат одинаковое число пуриновых и пиримидиновых оснований.

Следовательно, в любой ДНК на каждый пуриновый нуклеотид приходится один пиримидиновый. 2. Любая ДНК всегда содержит в равных количествах попарно аденин и тимин, гуанин и цитозин, что обычно обозначают как А Т и G C. Из этих закономерностей вытекает третья. 3. Количество оснований, содержащих аминогруппы в положении 4 пиримидинового ядра и 6 пуринового цитозин и аденин, равно количеству оснований, содержащих оксо-группу в тех же положениях гуанин и тимин, т. е. A C G T. Эти закономерности получили название правил Чаргаффа.

Наряду с этим было установлено, что для каждого типа ДНК суммарное содержание гуанина и цитозина не равно суммарному содержанию аденина и тимина, т. е. что G C A T , как правило, отличается от единицы может быть как больше, так и меньше ее. По этому признаку различают два основных типа ДНК АТ-тип с преимущественным содержанием аденина и тимина и GC-тип с преимущественным содержанием гуанина и цитозина. Величину отношения содержания суммы гуанина и цитозина к сумме содержания аденина и тимина, характеризующую нуклеотидный состав данного вида ДНК, принято называть коэффициентом специфичности.

Каждая ДНК имеет характерный коэффициент специфичности, который может изменяться в пределах от 0,3 до 2,8. При подсчете коэффициента специфичности учитывается содержание минорных оснований, а также замены основных оснований их производными.

Например, при подсчете коэффициента специфичности для ЭДНК зародышей пшеницы, в которой содержится 6 5-метилцитозина, последний входит в сумму содержания гуанина 22,7 и цитозина 16,8 . Смысл правил Чаргаффа для ДНК стал понятным после установления ее пространственной структуры. 4.2. Макромолекулярная структура ДНК В 1953 г. Уотсон и Крик, опираясь на известные данные о конформаци нуклеозидных остатков, о характере межнуклеотидной связи в ДНК и закономерности нуклеотидного состава ДНК правила Чаргаффа, расшифровали рентгенограммы паракристаллической формы ДНК так называемой В-формы, образующейся при влажности выше 80 и при высокой концентрации противоионов Li в образце. Согласно их модели, молекула ДНК представляет собой правильную спираль, образованную двумя полидезоксирибонуклеотидными цепями, закрученными относительно друг друга и вокруг общей оси. Диаметр спирали практически постоянен вдоль всей ее длины и равен 1,8 нм 18 А . Макромолекулярная структура ДНК. а -Модель Уотсона - Крика 6 -параметры спиралей В С- и Т-форм ДНК проекции перпендикулярно оси спирали в -поперечный разрез спирали ДНК в В-форме заштрихованные прямоугольники изображают пары оснований г -параметры спирали ДНК в А-форме д -поперечный разрез спирали ДНК в А-форме. Длина витка спирали, который соответствует ее периоду идентичности, составляет 3,37 нм 33,7 А . На один виток спирали приходится 10 остатков оснований в одной цепи. Расстояние между плоскостями оснований равно, таким образом, примерно 0,34 нм 3,4 А . Плоскости остатков оснований перпендикулярны длинной оси спирали.

Плоскости углеводных остатков несколько отклоняются от этой оси первоначально Уотсон и. Крик предположили, что они параллельны ей. Из рисунка видно, что углеводофосфатный остов молекулы обращен наружу.

Спираль закручена таким образом, что на ее поверхности можно выделить две различные по размерам бороздки их часто называют также желобками - большую, шириной примерно 2,2 нм 22 А , и малую -шириной около 1,2 нм 12А . Спираль - правовращающая. Полидезоксирибонуклеотидные цепи в ней антипараллельны это означает, что если мы будем двигаться вдоль длинной оси спирали от одного ее конца к другому, то в одной цепи мы будем проходить фосфодиэфирные связи в направлении 3 5 , а в другой - в направлении 5 3 . Иными словами, на каждом из концов линейной молекулы ДНК расположены 5 -конец одной и 3 -конец другой цепи. Регулярность спирали требует, чтобы против остатка пуринового основания в одной цепи находился остаток пиримидинового основания в другой цепи. Как уже подчеркивалось, это требование реализуется в виде принципа образования комплементарных пар оснований, т. е. остаткам аденина и гуанина в одной цепи соответствуют остатки тимина и цитозина в другой цепи и наоборот. Таким образом, последовательность нуклеотидов в одной цепи молекулы ДНК предопределяет нуклеотидную последовательность другой цепи. Этот принцип является главным следствием модели Уотсона и Крика, поскольку он в удивительно простых химических терминах объясняет основное функциональное назначение ДНК - быть хранителем генетической информации.

Заканчивая рассмотрение модели Уотсона и Крика, остается добавить, что соседние пары остатков оснований в ДНК, находящейся в В-форме, повернуты друг относительно друга на 36 угол между прямыми, соединяющими атомы С1 в соседних комплементарных парах . 4.3.

– Конец работы –

Эта тема принадлежит разделу:

Химия наследственности. Нуклеиновые кислоты. ДНК. РНК. Репликация ДНК и передача наследственной информации

Этот процесс не прерывается никогда. Наши соседи по планете - это миллиарды живых существ растения, животные,… Нас радует цветущий вишневый сад и шорох желтеющей, отмирающей листвы под ногами, умиротворяет выпрыгивающие из воды…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Состав нуклеиновых кислот

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Мир РНК как предшественник современной жизни
Мир РНК как предшественник современной жизни. Накопление знаний о генетическом коде, нуклеиновых кислотах и биосинтезе белков привело к утверждению принципиально новой идеи о том, что все начиналос

Возникновение биосинтеза белка
Возникновение биосинтеза белка. Далее на основе мира РНК должно было происходить становление механизмов биосинтеза белка, появление разнообразных белков с наследуемой структурой и свойствами, компа

Выделение дезоксирибонуклеиновых кислот
Выделение дезоксирибонуклеиновых кислот. Живые клетки, за исключением сперматозоидов, в норме содержат значительно больше рибонуклеиновой, чем дезоксирибонуклеиновой кислоты. На методы выдел

Состав РНК
Состав РНК. Первые сведения о нуклеотидном составе РНК относились к препаратам, представляющим собой смеси клеточных РНК рибосомных, информационных и транспортных и называемым обычно суммарной фрак

Макромолекулярная структура РНК
Макромолекулярная структура РНК. Химически РНК очень похожа на ДНК. Оба вещества - это линейные полимеры нуклеотидов. Каждый мономер - нуклеотид - представляет собой фосфорилированный N-глик

Мультифункциональность РНК
Мультифункциональность РНК. Суммирование и обзор знаний о функциях РНК позволяют говорить о необыкновенной многофункциональности этого полимера в живой природе. Можно дать следующий список о

ПРИРОДА МЕЖНУКЛЕОТИДНЫХ СВЯЗЕЙ
ПРИРОДА МЕЖНУКЛЕОТИДНЫХ СВЯЗЕЙ. Работы по определению способа соединения нуклеотидов в полимерных молекулах НК были успешно завершены в начале 50-х годов сразу после того, как была установлена стру

Межнуклеотидная связь в ДНК
Межнуклеотидная связь в ДНК. Химический гидролиз ДНК с целью установления природы межнуклеотидной связи оказался практически непригодным. ДНК не расщепляется при щелочных значениях рН, что х

Межнуклеотидная связь в РНК
Межнуклеотидная связь в РНК. Более сложным оказался вопрос о природе межнуклеотидной связи в РНК. Уже на первых этапах изучения строения РНК был установлен факт чрезвычайной неустойчивости се при щ

МАТРИЧНЫЙ СИНТЕЗ ДНК
МАТРИЧНЫЙ СИНТЕЗ ДНК. Способность клеток поддерживать высокую упорядоченность своей организации зависит от генетической информации, которая сохраняется в форме дезоксирибонуклеиновой кислоты ДНК .

Точность синтеза ДНК и механизм коррекции
Точность синтеза ДНК и механизм коррекции. Генетический материал живых организмов имеет огромные размеры и реплицируется с высокой точностью. В среднем в процессе воспроизведения генома млекопитающ

Инициация цепей ДНК
Инициация цепей ДНК. ДНК-полимеразы не могут начинать синтеза ДНК на матрице, а способны только добавлять новые дезоксирибонуклеотидные звенья к 3 -концу уже имеющейся полинуклеотидной цепи. Такую

Расплетение двойной спирали ДНК
Расплетение двойной спирали ДНК. Поскольку синтез ДНК происходит на одноцепочечной матрице, ему должно предшествовать обязательное разделение хотя бы на время двух цепей ДНК. Исследования, проведен

Прерывистый синтез ДНК
Прерывистый синтез ДНК. Легко вообразить, что репликация происходит путем непрерывного роста нуклеотида за нуклеотидом обеих новых цепей по мере перемещения репликационной вилки при этом, поскольку

Кооперативное действие белков репликационной вилки
Кооперативное действие белков репликационной вилки. До сих пор мы говорили об участии отдельных белков в репликации так, как будто бы они работают независимо друг от друга. Между тем в действительн

Согласованность процессов репликации ДНК и клеточного деления
Согласованность процессов репликации ДНК и клеточного деления. Эукариотическая клетка перед каждым делением должна синтезировать копии всех своих хромосом. Репликация ДНК эукариотической хро

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги