Промышленное применение

Промышленное применение. Рубидий Основные области применения рубидия - производство фотоэлементов, работающих в видимой области спектра; светящихся газосветных трубок, заполненных аргоном или неоном; сплавов, к которых рубидий является газопоглотителем для удаления последних следов воздуха из вакуумных ламп и создания в них высокого вакуума.

В небольшом количестве соединения рубидия применяют в медицине (как снотворные и болеутоляющие средства, а также при лечении некоторых форм эпилепсии). Отдельные его соединения используются в аналитической химии как специфические реактивы на марганец, цирконий, золото, палладий и серебро.

Между тем исследования, проведенные учеными различных стран, показали, что рубидий и его соединения обладают многими практически ценными качествами. Среди них первостепенное значение имеет каталитическая активность. Еще в 1921 г. немецкие химики Фишер и Тропш нашли, что карбонат рубидия – превосходный компонент катализатора для получения синтетической нефти – синтола. Синтолом была названа смесь спиртов, альдегидов и кетонов, образующаяся из водяного газа (смеси водорода с окисью углерода) при 410°C и давления 140 150 атм в присутствии специального катализатора.

После добавления бензола эту смесь можно было использовать в качестве моторного топлива. Катализатором служила железная стружка, пропитанная гидроокисью калия. Но если калий заменить рубидием, то эффективность процесса значительно повышается. Во-первых, выход маслянистых продуктов и высших спиртов становится вдвое больше; во-вторых, рубидиевый катализатор (в отличие от калиевого) не покрывается сажей и поэтому сохраняет свою первоначальную активность значительно дольше.

Позднее были запатентованы специальные катализаторы с рубидием для синтеза метанола и высших спиртов, а также стирола и бутадиена. Исходными продуктами служили: в первом случае – водяной газ, во втором – этилбензол и бутиленовая фракция нефти. Стирол и бутадиен – исходные вещества для получения синтетического каучука и поэтому их производство занимает видное место в химической промышленности высокоразвитых стран.

Обычно катализаторами здесь служат окислы железа с примесью окислов других металлов, главным образом меди, цинка, хрома, марганца или магния, пропитанные солями калия. Но если вместо калия ввести в состав катализатора до 5% карбоната рубидия, то скорость реакции удваивается. Кроме того, значительно повышается так называемое селективное действие катализатора и его устойчивость, т.е. процесс идет в желаемом направлении, без образования побочных продуктов, а катализатор служит дольше и не требует частой смены.

В последние годы предложены катализаторы, содержащие в том или ином виде рубидий, для гидрогенизации, дегидрогенизации, полимеризации и некоторых других реакций органического синтеза. Так, например, металлический рубидий облегчает процесс получения циклогексана из бензола. В этом случае процесс идет при значительно более низких температурах и давлениях, чем при активации его натрием или калием, и ему почти не мешают «смертельные» для обычных катализаторов яды – вещества, содержащие серу. Карбонат рубидия оказывает положительное действие на процесс полимеризации аминокислот; с его помощью получены синтетические полипептиды с молекулярной массой до 40000, причем реакция протекает без инерции, моментально.

Очень интересное исследование было проведено в США в связи с работами по изысканию новых видов авиационного топлива. Было найдено, что тартрат рубидия может быть катализатором при окислении сажи окислами азота, значительно снижая температуру этой реакции по сравнению с солями калия.

По некоторым данным, рубидий ускоряет изотопный обмен ряда элементов. В частности, его способность непосредственно соединяться как с водородом, так и с дейтерием может быть использована для получения тяжелого водорода, так как дейтерид рубидия обладает большей летучестью, чем обычный гидрид. Не исключено, что гидрид и особенно борогидриды рубидия смогут быть применены в качестве высококалорийных добавок к твердым топливам.

Стронций Еще задолго до открытия стронция его нерасшифрованные соединения применяли в пиротехнике для получения красных огней. И до середины 40-х годов нашего века стронций был, прежде всего, металлом фейерверков, потех и салютов. Атомный век заставил взглянуть на него по-иному. Во-первых, как на серьезную угрозу всему живому на Земле; во-вторых, как на материал, могущий быть очень полезным при решении серьезных проблем медицины и техники. Но об этом позже, а начнем с истории «потешного» металла, с истории, в которой встречаются имена многих больших ученых.

Свойство летучих солей стронция окрашивать пламя в карминово-красный цвет сделало их незаменимыми компонентами различных пиротехнических составов. Красные фигуры фейерверков, красные огни сигнальных и осветительных ракет – «дело рук» стронция. Чаще всего в пиротехнике используют нитрат Sr(NO3)2, оксалат SrC2O4 и карбонат SrCO3 стронция. Нитрату стронция отдают предпочтение: он не только окрашивает пламя, но и одновременно служит окислителем.

Разлагаясь в пламени, он выделяет свободный кислород: Sr(NO3)2 → SrO + N2 + 2,5О2. Окись стронция SrO окрашивает пламя лишь в розовый цвет. Поэтому в пиротехнические составы вводят хлор в том или ином виде (обычно в виде хлорорганических соединений), чтобы его избыток сдвинул равновесие реакции вправо: 2SrO + Cl2 ↔ 2SrCl + O2. Излучение монохлорида стронция SrCl интенсивнее и ярче излучеиия SrO. Кроме этих компонентов, в пиротехнические составы входят органические и неорганические горючие вещества, назначение которых – давать большое неокрашенное пламя.

Рецептов красных огней довольно много. Приведем для примера два из них. Первый: Sr(NO3)2 – 30%, Mg – 40%, смолы – 5%, гексахлорбензола – 5%, перхлората калия KClO4 – 20%. Второй: хлората калия КClO3 – 60%, SrC2O, – 25%, смолы – 15%. Металлический стронций не получил широкого применения в технике. Его используют для раскисления меди и бронзы и как поглотитель газов в электровакуумной технике.

Сплав Pb–Sn–Sr применяют для изготовления анодов аккумуляторных батарей, а сплав Sr–Cd – для гальванических элементов. Стронций входит в состав некоторых сплавов с сильно пирофорными свойствами (например Mg–Sr), а также сплавов для изготовления люминофоров и фотоэлементов. Радиоактивный изотоп Sr89 используется для обнаружения повреждений телеграфных кабелей, а Sr90 является источником β-излучения в атомных электрических батареях, характеризующихся постоянством напряжения и длительным сроком службы.

Более широко в технике применяют минералы и соединения стронция. Стронцианит и карбонат стронция идут на очистку высокосортных сталей от серы и фосфора. В производстве чистой каустической соды целестин (иногда в смеси со стронцианитом) служит адсорбентом для поглощения примесей железа и марганца. Минералы стронция используют для приготовления тяжелых жидкостей для бурения скважин. Соединения стронция используют для замены ядовитой окиси свинца в производстве стекол, глазурей и особенно эмалей, применяемых для покрытия фарфора.

Стронциевые глазури не только безвредны, но и доступны (карбонат стронция SrCO3 в 3,5 раза дешевле свинцового сурика). Все положительные качества свинцовых глазурей свойственны и им. Более того, изделия, покрытые такими глазурями, приобретают дополнительную твердость, термостойкость, химическую стойкость. Соединения стронция используют для замены ядовитой окиси свинца в производстве стали, жароупорных сплавов, легких металлов и их сплавов.

Окись стронция входит в состав некоторых оптических стекол и оксидных покрытий катодов радиоламп, отличающихся высокими эмиссионными свойствами. Гидроокись стронция применяют для выделения сахара из патоки. Хромат стронция, очень устойчивый пигмент, применяют для грунтовки и изготовления художественных красок. Титанат стронция входит в состав керамических масс с полупроводниковыми свойствами, а также используется в ювелирном деле. Стронциевые соли жирных кислот, так называемые «стронциевые мыла», применяют при изготовлении специальных видов консистентных смазок.

Галогениды стронция используют в холодильной промышленности, медицине и косметике. Вывод Несмотря на их «соседское» расположение в Периодической таблице Д. И. Менделеева, рубидий и стронций имеют как различные, так и сходные химические и физические свойства. Оба они имеют схожие внешние признаки, однако, по-разному реагируют с окружающей средой. Оба элемента обладают схожими окислительно-восстановительными свойствами (оба являются восстановителями) и кислотно-основными свойствами (проявляют основные свойства), но в то же время имеют отличные друг от друга сферы применения.

Оба элемента радиоактивны и в больших количествах вредны для здоровья живых организмов.