рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Получение наночастиц серебра с помощью лазерного излучения

Работа сделанна в 2008 году

Получение наночастиц серебра с помощью лазерного излучения - Курсовая Работа, раздел Химия, - 2008 год - Изучение процесса восстановления серебра в водных растворах Получение Наночастиц Серебра С Помощью Лазерного Излучения. В Последние Неско...

Получение наночастиц серебра с помощью лазерного излучения. В последние несколько лет для получения коллоидных частиц металлов использовалось лазерное облучение.

Для элементов, в первых работах Мафуна [5], было показано, что получение наночастиц с помощью лазера, может быть выполнено в растворах, эта возможность используется металлическими коллоидными частицами, без учета ионов в конце процесса образования наночастиц. Изучается возможность расширения этого процесса для большего числа различных растворителей отличных от воды, что было представлено в работах Амондола [6], который предложил способ контролирования металлических кластерных соединений за счет переизлучения, мониторинга результатов с помощью исследования оптических свойств.

Совсем недавно исследовалось прямое влияние лазерного излечения на золото-серебряную коллоидную смесь, что дало новые способы получения сплавов наночастиц. Контроль размера, формы и структуры металлических наночастиц технологически важны из-за сильных корреляций между этими параметрами и оптическими, электрическими и кристаллическими свойствами. 1.2.1.3 Радиационно-химическое восстановление ионов металлов в водных растворах.

Образование золей металла [5] Радиационно-химическое восстановление (или окисление) ионов металлов в водных растворах осуществляется ионными и радикальными частицами, которые генерируются под действием ионизирующего излучения. Атомы и ионы в необычных и неустойчивых состояниях окисления, образующиеся на начальном этапе восстановления ионов металлов в водном растворе, являются источником формирования наночастиц.

Радиационно-химическое восстановление многих ионов металлов в водных растворах в присутствии стабилизаторов приводит к образованию золей металла. Этот способ получения металлических наночастиц имеет ряд несомненных преимуществ, что обеспечило его достаточно широкое применение. К числу достоинств можно отнести, по крайней мере, следующие. Во-первых, вводимые в исходный раствор добавки не загрязняют образующиеся металлические золи, что неизбежно при использовании NaBH4 и других восстановителей.

Во-вторых, при облучении радикалы-восстановители генерируются равномерно по объему раствора, что позволяет избежать локальных пересыщений, создаваемых при обычном проведении восстановительной реакции. В-третьих, простота проведения эксперимента: реакционный сосуд с вакуумированным раствором помещают на источник излучения, восстановительный процесс заканчивается после удаления раствора от источника излучения.

В-четвертых, приготовленные растворы, содержащие в необходимой концентрации органические соединения, практически прозрачны даже в глубоком ультрафиолетовом свете, что позволяет успешно применять для исследования золей наиболее информативный метод электронной спектроскопии. Радиационно-химический метод полезно дополняет другие приемы получения металлических наночастиц (фотохимические, электрохимические, сонохимические и др.); использование для этих целей разнообразных восстановителей и стабилизаторов; восстановление в обратных мицеллах и многие другие. 1.3 Свойства наночастиц серебра Свойства коллоидного раствора, в том числе и наночастиц серебра, определяются возможностью коагуляции и перекресталлизации, т. е. агрегативной устойчивостью, а также седиментационной устойчивостью и возможностью их окисления кислородом воздуха.

Анализ литературных данных показал, что для описания устойчивости нанодисперсии серебра во времени могут быть использованы несколько методов.

Метод визуального наблюдения за системой может дать предварительные и общие закономерности относительной устойчивости исследуемой дисперсии. Может быть зафиксировано изменения окраски системы и/или образования осадка в ней. Для наночастиц серебря цвет систем от красного (желто-коричневого) меняется до серого и даже черного. Визуальный метод наблюдения может сыграть определяющую роль при исследовании седиментационной устойчивости. Было найдено [7], что при радиационно-химическом восстановлении ионов Ag+ в присутствии наночастиц гетерополисоединений в оптическом спектре возникают полоса золя металла с максимумом при 392 нм и полоса при 650 нм, обусловленная продуктом восстановления («синь»). Напуск воздуха приводит к окислению «сини», интенсивность полосы наночастиц серебра при этом существенно уменьшается и смещается в длинноволновую область (λмакс = 410 нм). Повторное γ-облучение раствора восстанавливает предшествующий спектр поглощения.

Указанную процедуру «окисления-восстановления» можно провести несколько раз, при этом достигаются те же оптические эффекты.

Таким образом, восстановление гетерополисоединения, составляющего стабилизирующий слой наночастицы серебра, обеспечивает повышение электронной плотности на металлическом ядре, что вызывает увеличение интенсивности полосы поглощения и ее «синее» смещение. Соответственно, окисление приводит к обратному эффекту.

Анализируя спектры поглощения, можно предположить, что появление дополнительной полосы поглощения в длинноволновой части спектра говорит о возможной коагуляции и перекристаллизации, происходящих в системе. Агрегативную устойчивость можно охарактеризовать при помощи метода электронной микроскопии. Он позволяет получить распределение частиц по размерам и формам, а также дает представление о расположение наночастиц в пространстве (несвязанные, коагулированные). Согласно теории Ми. Друде [8] (Mie. Drude) положение максимума полосы поглощения поверхностных плазмонов в металле определяется по уравнению: λ2макс = (2πc)2m(ε0 + 2n)/4πNе e2 (1) где c - скорость света; m - эффективная масса электрона; e - заряд электрона; ε0 – диэлектрическая проницаемость металла; n - показатель преломления среды; Ne - плотность свободных электронов в металле.

Рассеяние света мелкими частицами обусловливает широкий класс явлений, которые можно описать на основе теории дифракции света на диэлектрических частицах.

Многие характерные особенности рассеяния света частицами удаётся проследить в рамках строгой теории, разработанной для сферических частиц английским учёным А. Лявом (1889) и немецким учёным Г. Ми (1908, теория Ми). Когда радиус шара r много меньше длины волны света ln в его веществе, рассеяние света на нём аналогично нерезонансному рассеянию атомом. Сечение (и интенсивность) рассеяния в этом случае сильно зависит от r и от разности диэлектрических проницаемостей e и e0 вещества шара и окружающей среды: s ~ ln—4r6(e - e0) (Рэлей, 1871). С увеличением r до r ~ ln и более (при условии e > 1) в индикатрисе рассеяния появляются резкие максимумы и минимумы — вблизи так называемых резонансов Ми (2r = mln, m = 1,2, 3) сечения сильно возрастают и становятся равными 6pr2 рассеяние вперёд усиливается, назад — ослабевает; зависимость поляризации света от угла рассеяния значительно усложняется.

Рассеяние света большими частицами (r >> ln) рассматривают на основе законов геометрической оптики с учётом интерференции лучей, отражённых и преломленных на поверхностях частиц.

Важная особенность этого случая — периодический (по углу) характер индикатрисы рассеяния и периодическая зависимость сечения от параметра r/ln. Рассеяние на крупных частицах обусловливает ореолы, радуги, гало и др. явления, происходящие в аэрозолях, туманах и пр. Рассеяние средами, состоящими из большого числа частиц, существенно отличается от рассеяния отдельными частицами.

Это связано, во-первых, с интерференцией волн, рассеянных отдельными частицами, между собой и с падающей волной. Во-вторых, во многих случаях важны эффекты многократного рассеяния (переизлучения), когда свет, рассеянный одной частицей, вновь рассеивается другими. В-третьих, взаимодействие частиц друг с другом не позволяет считать их движения независимыми. 1.4

– Конец работы –

Эта тема принадлежит разделу:

Изучение процесса восстановления серебра в водных растворах

Растворы золей металлов, преимущественно золота, серебра и металлов платиновой группы, интенсивно изучались в прошедшем столетии. Среди вариантов их получения преобладают методы, основанные на восстановлении… В начале 1990-х годов применение радиационно-химического метода восстановления позволило получить такой химически…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Получение наночастиц серебра с помощью лазерного излучения

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Применение наночастиц серебра
Применение наночастиц серебра. Наночастицы не разрушаются при действии длительного облучения. Это их свойство нашло широкое применение в сфере изучения различных биологических процессов и природы я

Получение наночастиц серебра методом химического восстановления в растворах
Получение наночастиц серебра методом химического восстановления в растворах. Наночастицы серебра в водных растворах получают путем восстановления ионов серебра с помощью глюкозы, аскорбиновой кисло

Получение наночастиц серебра методом фотолиза
Получение наночастиц серебра методом фотолиза. Процесс фотолиза, с помощью лазерного возбуждения, также может быть использован для получения наночастиц серебра в коллоидных растворах. Камат

Методы исследования наночастиц
Методы исследования наночастиц. Для описания устойчивости нанодисперсии серебра во времени могут быть использованы несколько методов. Метод визуального наблюдения за системой может дать пред

Оборудование и реактивы
Оборудование и реактивы. Растворы концентрация AgNO3 5*10-3M; 1*10-3M; 5*10-4M; 1*10-4M; C6H12O6 1*10-2M; 1*10-3M; C6H8O6 1*10-2M; 2*10-2M; NaBH4 1*10-2M; NH3*H2O 25%; Фармацевтический препарат «Ас

Обсуждение результатов
Обсуждение результатов. После проведенных исследований, было установлено, что эффективными восстановителями являются боргидрид натрия и глюкоза. В дальнейшем в работе использовался восстанов

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги