рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

МЕТОД КОНКУРИРУЮЩЕЙ РАСТВОРИМОСТИ

МЕТОД КОНКУРИРУЮЩЕЙ РАСТВОРИМОСТИ - Реферат, раздел Химия, Исследование растворимости и ионного обмена как инструмент изучения равновесий в водном растворе Метод Конкурирующей Растворимости. Если Неудобно Измерять Растворимость Вас, ...

МЕТОД КОНКУРИРУЮЩЕЙ РАСТВОРИМОСТИ. Если неудобно измерять растворимость ВАс, метод раство­римости тем не менее может быть использован для определе­ния констант устойчивости комплексов ВАn, при условии, что можно приготовить труднорастворимый твердый комплекс ВАС или ВАС, который содержит вспомогательную центральную группу В или лиганд А, и что можно определить независимо его произведение растворимости и константы устойчивости вспомогательного ряда комплексов ВАn. Метод конкури­рующей растворимости в отличие от прямого метода в принципе может быть использован для изучения по­лиядерных комплексов ВqАp при условии, что начальные кон­центрации А и В могут меняться.

ИОННЫЙ ОБМЕН Катиониты являются полифункциональными соединениями, состоящими из высокомолекулярных анионов н простых катио­нов; промышленные синтетические вещества обычно являются формальдегидными или полистирольными смолами, которые со­держат фенольную, сульфо- или карбоксильную группы в кис­лой форме или в виде соответствующей натриевой соли. Смолы не растворяются в воде и в большинстве органических раство­рителей.

Если их привести в равновесие с раствором, содержа­щим ионы металла или другие катионы (например, ВАnz+ ), они могут участвовать в реакции обмена типа где подстрочная буква R обозначает фазу смолы.

Нерастворимые амины или четвертичные аммониевые соли могут подвергаться подобным реакциям обмена с анионами в растворе, например, между анионным лигандом А и обменником в хлоридной форме. Большинство анионитов является несколько неустойчивыми смолами с высоким молекулярным весом, но на практике так­же применяются жидкие амины с умеренно низким молекуляр­ным носом.

Из уравнений очевидно, что изучение полного распределения центральной группы В или лиганда А между ионообменииком и водной фазой может дать ценные све­дения о формах, присутствующих в растворе. Еще в 1922 г. было проведено первое, хотя и безуспешное исследование комп­лексов металлов с помощью синтетического цеолита, но ионный обмен не применялся для изучения рав­новесия в растворе до конца 1945 г когда стали легко доступными синтетические смолы.

Как катиониты, так и аниониты использовались для определения природы форм, присутствую­щие в растворе, но обычно катиониты более пригодны для определения констант устойчивости. 1. КАТИОННЫЙ ОБМЕН Коэффициент распределения катиона где с+ - максимальное значение n для катионного комплекса) ме­жду водной фазой и натриевой формой катионита можно выра­зить через константу равновесия. Та­ким образом, стехиометрнческая константа распределения ВАnz+ определяется формулами и будет постоянной при условии, что постоянны значения и отношение концентрации ионов натрия в двух фазах.

Послед­нее условие выполняется, если водная фаза содержит постоян­ную высокую концентрацию ионов натрия и обмен невелик. По­добным образом, если вероятен гидролиз группы В в смоле или в растворе, то достаточно использовать смолу в водород­ной форме и сильную кислоту в качестве фонового электро­лита. Использование постоянной ионной среды так­же обеспечивает постоянство коэффициентов активности в вод­ной фазе. Томпкинс и Мэйер нашли, что константа рав­новесия обмена между ионами лантана и аммония на смоле Дауэкс 50 достигает постоянной величины при очень низких концентрациях ионов лантана.

Работы Фронеуса по ацетатным системам меди и никеля указывали на то, что при постоянной и очень малой загрузке смолы значения К зависят от концентрации свободных ацетат-ионов в водной фазе. Это означает, что, несмотря на разные заряды, формы В2+ и ВА+ действуют одинаково на коэффициенты ак­тивности в фазе смолы при условии, что они присутствуют толь­ко в небольших концентрациях.

Поэтому Фронеус рекомендует получать количественные сведения о комилексообразованиии полной фазе на основе измерений, которые относились бы к постоянным и очень небольшим загрузкам смолы. Поэтому ионообменный метод не пригоден для количественного изучения систем, в которых образуются полиядерные формы.

Для того чтобы обеспечить независимость констант от кон­центрации водородных ионов раствора, следует использовать сильнокислую однофункцнональную смолу, такую, как сульфи­рованный полистирол (например, Дауэкс 50, Цеокарб 225 или Амберлит 120). Дальнейшим недостатком слабокислых смол, содержащих фенольные группы, является их тенденция к вос­становлению поглощенных форм (например, иона VО2+ ). Если используются сильнокислые обменники при малой и по­стоянной загрузке, то коэффициенты активности в фазе смолы и отсюда стехиометрический коэффициент распределения между смолой и постоянной ионной средой будут оступаться постоян­ными. Общее предположение, что только положительно заряжен­ные формы сорбируются на катионите, было проверено на си­стеме оксалата магния.

Если оно справедливо в любом слу­чае то распределение центральной группы между катионитом и раствором определяется выражением при условии, что коэффициенты активности в обоих фазах соот­ветственно контролируются. Метод ограничивается системами комплексов катионных центральных групп с отрицательно заряженными лигандами.

Катионный обмен не является ни относительно точным, ни относительно удобным методом для определения констант устойчивости большинства систем. Функцию nв(а) невозмож­но определить с такой же точностью, которую часто получают в потенциометрии, а интерпретация данных включает (с++1) параметров в дополнение к искомым величинам βn. Так как В не может меняться в большой области концентраций, то этот метод ограничивается моноядерными системами.

Более того, возникают заметные изменения nв от а, если лигандом яв­ляется анион. Однако метод пригоден для изучения систем, в которых В следует сохранять очень низким (например, вслед­ствие образования полиядерных форм при макроконцентрациях или из-за большой радиоактивности или недостаточного коли­чества группы В). Наиболее удобно, когда происходит распре­деление только центральной группы, но для катионного обмена были получены обнадеживающие результаты, которые согла­суются с данными других методов в системах с с+>0. 3. анионный обмен Анионный обмен, так же как и катионный, может быть при­менен для изучения комплексообразования между положитель­но заряженной центральной группой и отрицательно заряжен­ным лигандом.

Однако его использование осложнено тем, что в добавление к анионным комплексам на смоле также адсорби­руются лиганд и анион фонового электролита. Поэтому состав обменника и, следовательно, коэффициенты активности в фазе смолы будут сильно меняться в зависимости от состава водной фазы, если в макроконцентрации присутствует более чем один тин аниона.

В таких случаях коэффициент распределения яв­ляется чрезвычайно сложной функцией от а. Поэтому для изу­чения анионного обмена нельзя применять фоновый электро­лит, если лиганд не присутствует в микроконцептрациях. Но часто оказывается, что для образования анионных комплексов необходимы высокие концентрации свободного лиганда. В бла­гоприятных случаях коэффициенты активности в обменнике можно считать постоянными, если используются следовые кон­центрации группы В и если обменник насыщен лигандом.

Одна­ко анионообменный метод имеет тот большой недостаток, что поскольку не может быть использована постоянная ионная сре­да, то нельзя контролировать коэффициенты активности в вод­ной фазе. Фронеус был первый, кто попытался количественно об­работать результаты анионного обмена для комплексов метал­лов. Его метод был значительно расширен Маркусом и Корьеллом, Фоминым к его сотрудниками.

Адсорбцию анионного комплекса ВАС можно представить реакцией для комплексов с центральной группой В z в+ и лигандом Аz А Коэффициент распределения центральной группы между обменником и водным раствором определяется уравнением где является смешанной константой обмена реакции и является смешанной константой устойчивости формы ВAn.

– Конец работы –

Эта тема принадлежит разделу:

Исследование растворимости и ионного обмена как инструмент изучения равновесий в водном растворе

Этот метод был также применен для изучения равновесия в смешанных водно-органических растворителях и в системах, насыщенных по отношению к… Большинство данных по растворимости трудно интерпрети­ровать, так как часто… Например, Нильссон нашел, что про­изведение растворимости иодида таллия было одинаково в 4 М растворе перхлората…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: МЕТОД КОНКУРИРУЮЩЕЙ РАСТВОРИМОСТИ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДЫ
ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДЫ. Методы для определения растворимости в широких пределах экспериментальных условий были рассмотрены Циммерманом. При изучении равновесия в водном растворе изменение

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги