рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Уточнение аппаратурного оформления

Работа сделанна в 2006 году

Уточнение аппаратурного оформления - Курсовой Проект, раздел Химия, - 2006 год - Переработка вторичного сырья: инструментальных сталей, осколков и пыли на основе твердых сплавов карбида вольфрама Уточнение Аппаратурного Оформления. Щековая Дробилка 14 Основной Проблемой Сх...

Уточнение аппаратурного оформления. Щековая дробилка 14 Основной проблемой схемы переработки является измельчение сырья. Рисунок 2. Щековая дробилка Достижимая конечная крупность зависит от выбранной ширины щели и составляет dso 15 мм наибольшая ширина щели dso 1 мм наименьшая ширина щели. Принцип действия Лабораторная проба измельчается в закрытом рабочем пространстве воздействием большого давления между двумя дробящими плитами.

Между двумя боковыми опорными стенками находится неподвижная дробящая плита.

Второй дробящей плитой, которая приводится в движение эксцентриком, проба втягивается и прижимается к неподвижной дробящей плите.

Вследствие очень большого давления между обеими плитами куски пробы раздрабливаются.

Раздробленный материал выступает внизу через регулируемую снаружи разгрузочную щель. При непрерывной работе материал может, например, через желоб подводиться для дальнейшего измельчения в лабораторной дисковой мельнице.

Принадлежности Дробящие плиты и опорные стенки - предлагаются в различных материалах во избежание нежелательного загрязнения тюб при износе измельчительных элементов. Материал Плотность г см3 Износостойкость Применение для следующих материалов Твёрдый сплав карбида вольфрама 91 WC 9 Со 14,8 очень хорошая твёрдая, абразивная проба Двуокись циркония 94,8 Zr02 5,7 чрезвычайно хорошая абразивная проба, проба средней твёрдости, безжелезное измельчение Обычно дробящие плиты и опорные стенки изготавливаются из одинакового материала, однако, если боковые стенки не подвергаются большой нагрузке, то можно использовать стандартное исполнение их из закалённой инструментальной стали.

Тонкое измельчение в диапазоне от 95 мм до 0,1 мм - монтажная станина с питающим желобом в комбинации с лабогатошой дисковой мельницей.

Технические данные Модель П Размер отверстия воронки 100 х 100 мм Крупность загружаемого материала ок.95 мм Производительность 200 кг час Ширина щели тонкость 1-15 мм Мощность двигателя 2,2 кВт Вес нетто 205 кг брутто 245 кг Стандартное исполнение Дробящие плиты и боковые стенки из закалённой хромистой стали Размеры ширина х глубина х высота 41x83x72 см 8.2. Дисковая мельница 14 Область применения.

Прибор применяется для прерывного или непрерывного тонкого измельчения хрупких и очень твёрдых проб. Максимальная крупность загружаемых кусков составляет ок.20 мм длины ребра.

Достижимая конечная тонкость d50 находится в зависимости от установленной ширины щели в диапазоне от ок.12 мм наибольшая ширина щели до 0,1 мм наименьшая ширина щели. Максимальная производительность зависит от выбранной ширины щели и твёрдости пробы и составляет ок.150 кг час. Принцип действия.

Материал измельчается между двумя встречнодействующими, с внутренней стороны грубо.

Технические данные Макс, крупность Загружаемого материала 20 мм Производительность 150 кг час Конечная тонкость 0,1 - 12мм Питание 400 В 3 , 50 - 60 Гц, 1830Вт Скорость вращения измельчающего диска 439 об мин Вес нетто 140 кг, брутто 170 кг Размеры ширина х глубина х высота 44 х 87 х 40 см Упаковка картонный ящик! 08 х 60 х 70 см 8.3. Гранулятор 14 Гранулятор барабанный Модель ГБ-1600 обеспечивает получение полуфабриката 0-20 мм. Он может быть использован для интенсивного перемешивания влажных и сухих тонкодисперсных компонентов, производительность, м3 час - не менее 10,0, диаметр барабана - 1600 мм, частота вращения барабана - 18 об мин, режим работы - непрерывный, электродвигатель 4А13288УЗ N 4 квт, п 750 об мин привод барабана 8.4. Печь кипящего слоя См. п. п.4.1.2.3 7. Температура обжига 900 С Непрерывная загрузка и отгрузка сырья 8.4.1. Циклон 9 Модель НО7215А Коэффициент очистки 0,99 Количество очищаемого воздуха до6550 м2 7.4.2. Рукавный фильтр 8 Достигаемая эффективность очистки газов от взвешенных частиц пыли, золы и т. л 20 мг мЗ до 99,9 и в случае применения повторного цикла можно достичь даже ниже 1 мг мЗ. Регенерация фильтров производиться импульсом сжатого воздуха либо низконапорной обратной продувкой воздухом.

По типу применяемых рукавов имеются фильтры рукавные, карманные и др. В случае применения керамических рукавов можно эксплуатировать фильтр до 850 С Марка ФРИ-360 Площадь поверхности фильтрования 360 м2 Диаметр рукава 135 мм. 7.5. Реактор для выщелачивания с распыляющимся с верху реагентом Выбран стандартный реакционный аппарат с перемешивающим устройством.

Объем 200л материал корпуса - сталь.

Расчет количества оборудования производится по формуле V Q T r V y Где Q - суточная производительность на операции 18128 кг сут т - длительность цикла операции 20мин. V - рабочая емкость аппарата 150л г - число часов работы аппарата в сутки 22 у - коэффициент заполнения, обычно принимают 0,7-0,85 п 18128 20 0,75 200 22 60 1,8 2шт 7.6. НУТЧ фильтр 7 Рисунок 4. НУТЧ фильтр.

Нутч-фильтр предназначен для обезвоживания осадка шлама из отстойников и дифференциаторов под действием вакуума.

Количество аппаратов принимается в зависимости от количества шлама поступающего на обезвоживание.

Марка НФ-1000-01. Выпускаются производительностью 100 кг ч по осадку Допустимая температура стенки, С в кислой среде - от минус 20 до плюс 200 8.7. Колонна осажденияВыбран стандартный реакционный аппарат с перемешивающим устройством.

Объем 300л материал корпуса - сталь.

V - Q i r V y Где Q - суточная производительность на операции 24530 кг сут т - длительность цикла операции 35 мин V - рабочая емкость аппарата 100л г - число часов работы аппарата в сутки 22 у - коэффициент заполнения, обычно принимают 0,7-0,85 п 24530 25 0,75 300 22 60 2шт. 7.8НУТЧ фильтр.

См. п. п.7.6 8.9.Сушильные аппараты с вращающимися барабанами 7 Сушилка представляет собой цилиндрический корпус, установленный на роликовых опорах с наклоном в сторону выгрузки материала.

Выбираем не большую печь, с производительностью не менее 200кг ч При температуре 750 С. Марка БНО,5-2,5НУ Частота вращения барабана 4,6 об мин Масса, кг, не более 2000кг. 8.10. Индукционная печь 10 Модель камерные лабораторные печи производимые НПК ЛенТерм Тип печ КЭСл-2,5Ь Тмах, 900 С Тип нагревателей мет. спирали. 9. Вывод В процессе производственной деятельности образуются отходы, которые нарушают экологическое равновесие, загрязняя окружающую среду, и снижают степень извлечения ценных компонентов, содержащихся в исходном сырье.

Эти отходы необходимо перерабатывать.

В настоящее время подсчеты показали, что удельные капитальные затраты на сбор и переработку вторичного металла в 25 раз меньше, чем на производство металла из руды. Производительность труда во вторичной цветной металлургии примерно в два раза выше, чем в первичной.

Сбор и переработка вторичных металлов имеют не только экономический, но и социальный эффект.

Отходы подразделяют на отходы производства и отходы потребления лом. В настоящее время для производства режущих инструментов широко используются твердые сплавы.

Они состоят из карбидов вольфрама, титана, тантала, сцементированных небольшим количеством кобальта. Карбиды вольфрама, титана и тантала обладают высокой твердостью, износостойкостью.

Скорости резания инструментами, оснащенными твердыми сплавами, в 3-4 раза превосходят скорости резания инструментами из быстрорежущей стали.

Недостатком твердых сплавов, по сравнению с быстрорежущей сталью, является их повышенная хрупкость, которая возрастает с уменьшением содержания кобальта в сплаве.

И, следовательно, возникает вопрос утилизации таких сплавов. Переработка лома и отходов позволяет вернуть металл в кругооборот. 5. Сплавы редких металлов перерабатывают окислением, хлорированием, электролизом и гидрометаллургическим способом.

Их переработка осложнена более высоким содержанием других металлов и взаимным влиянием компонентов сплавов на технологические процессы Окислительные методы.

Их можно использовать и для переработки сплавов и кусковых отходов твердых сплавов. Применяемые в настоящее время инструментальные твердые сплавы базируются на карбидах вольфрама, титана и тантала или на смеси указанных соединений с добавлением связующего металла - кобальта Методы хлорирования.

При хороших технологических показателях следует отметить громоздкость оборудования для хлорных схем, а также трудности, связанные с агрессивностью и токсичностью хлора и хлоридов, необходимостью специальных коррозионностойких материалов для аппаратуры и значительными затратами на реагенты - Способы электрохимического растворения отходов.

Электрохимическое растворение отходов сплавов используют на отечественных и зарубежных предприятиях.

Этот метод наиболее дешев и не требует сложной аппаратуры.

Электрохимическое растворение целесообразно вести в щелочных растворах, так как образуются легко растворимые соли рения, вольфрама и молибдена. 6. Как показали расчеты - невязка материального баланса обжига 2,124 , она связана с погрешностью расчетов невязка теплового баланса 0,12 рассчитана с удовлетворительной точностью площадь пода равна 1,5м2, для расчета печи с такой площадью пода нужна спец литература, целью данной работы не является данный расчет. 9.

– Конец работы –

Эта тема принадлежит разделу:

Переработка вторичного сырья: инструментальных сталей, осколков и пыли на основе твердых сплавов карбида вольфрама

Они состоят из карбидов вольфрама, титана, тантала, сцементированных небольшим количеством кобальта. Карбиды вольфрама, титана и тантала обладают высокой твердостью,… Скорости резания инструментами, оснащенными твердыми сплавами, в 3-4 раза превосходят скорости резания инструментами…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Уточнение аппаратурного оформления

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные проблемы переработки вторичного редко металлического сырья
Основные проблемы переработки вторичного редко металлического сырья. В настоящее время подсчеты показали, что удельные капитальные затраты на сбор и переработку вторичного металла в 25 раз меньше,

Классификация по физическим признакам
Классификация по физическим признакам. По физическим признакам отходы цветных металлов делятся на четыре класса А - лом и кусковые отходы Б - стружка, проволока В - порошкообразные и пастообразные

Классификация по химическим признакам
Классификация по химическим признакам. По химическому составу вторичное сырье делится на группы и марки. Группы характеризуют состав вторичного сырья. Чем больше номер группы, тем ниж

Способы утилизации и переработки вторичного сырья
Способы утилизации и переработки вторичного сырья. Основные этапы переработки вторичного сырья определяются его видом. Переработка твердых отходов включает контроль радиоактивности, взрывооп

Переработка сплавов редких элементов
Переработка сплавов редких элементов. Сплавы редких металлов перерабатывают окислением, хлорированием, электролизом и гидрометаллургическим способом. Их переработка осложнена более высоким содержан

Гидрометаллургические методы
Гидрометаллургические методы. Их можно использовать для переработки ниобиевых сплавов, содержащих 80-90 Nb, а также пылей от заточки твердосплавного инструмента. Технологические этапы перера

Описание схемы переработки карбида
Описание схемы переработки карбида. Дробление и измельчение. Исходное сырье поступает в щековую дробилку, затем в дисковую мельницу, где происходит измельчение сырья до нужного размера до 1,0 мм. 4

WC - Карбид вольфрама
WC - Карбид вольфрама. Молекулярная масса 195,86 Получаются прокаливанием смеси W и С при 1400-1500 С. Физические и химические свойства, tnn WC свыше 3000 С плотность WC 15,6 г см3. Нерастворимы бе

TiC - Карбид титана
TiC - Карбид титана. tun свыше 3000 С. Карбид титана, обладающий высокой твердостью и тугоплавкостью, является компонентом жаропрочных и твердых инструментальных сплавов, абразивный материал, его и

Со-Кобальт
Со-Кобальт. Электронная формула KL3s23p63d74s2, еион Ме Ме е 7,86 эВ. Степень окисления 1 , 2, 3, 4 валентность 1 , 2, 3,4 Физические свойства серебристо-серый с розоватым оттенком металл, tra 1494

СоО - Оксид кобальта П
СоО - Оксид кобальта П. Серовато-зеленый кристаллический порошок с решеткой типа NaCl.1ПЛ 1935 С, плотность равна 6,45 г см. Устойчив до 2860 С. Мало растворим в воде и других растворителях. Проявл

Zn - Цинк
Zn - Цинк. Электронная формула KLM4s2, Еион Ме Ме е 9,39 эВ Степень окисления 2 валентность 2 Физические свойства серебристо-белый с голубоватым оттенком мягкий металл, U 1809 C, tjonr OOCfC, плотн

ZnO - Оксид цинка
ZnO - Оксид цинка. Встречается в природе в виде минерала цинкита. Диамагнитные кристаллы со структурой вюртцита белого цвета. tnn 1969 C, плотность равна 5,70 г см3. Мало растворим в воде. Растворя

Си - Медь
Си - Медь. Электронная формула KLM4S1, Еи0н Ме Ме е 7,72 эВ Степень окисления 1, 2, 3 валентность 1,2, 3 Физические свойства мягкий блестящий металл красноватого цвета, 1Ш 1085 С, 1кип 2540 С, плот

О - Оксид меди I
О - Оксид меди I. Встречается в природе в виде минерала куприта. Диамагнитные кубические кристаллы, цвет которых меняется от коричневого до карминово-красного. tnn 1238 C. Мало растворим в в

СиО - Оксид меди П
СиО - Оксид меди П. Встречается в природе и называется черной медью, мелаконитом или теноритом. Парамагнитный черный порошок или черные кубические кристаллы . tnn 1335 C, 1пл 1026 С, плотность равн

Fe-Железо
Fe-Железо. Электронная формула KL3s23p63d64s2, ЕиОН М Ме е 7,90 эВ. Степень окисления 2, 3, 4, 6, 8 валентность 2,3, 4,6, 8 . Физические свойства серебристо-серый твердый металл, tim 1539 C, 1кип 3

ГеО - Оксид железа II
ГеО - Оксид железа II. Диамагнитный черный неустойчивый кристаллический порошок. Решетка типа NaCl. tm 13680C. Превращается в при нагревании на воздухе. Мало растворим в воде и щелочах. Растворяетс

Запишем уравнения используя исходные данные и принятые значения
Запишем уравнения используя исходные данные и принятые значения. Xi Xo XK2i i XO2l 1 X21 X221 Хо 166,67 Хк211 0,2 0,1 0,78 0,15 Xi X2i 0,65 0,02 0,78 0,15 X1 X22i 0,15 0,01 0,78 0,15 Xi 0,1 - доля

Расчет циклонной пыли
Расчет циклонной пыли. Количество карбида окисляемого в циклоне в виде металлов Со, Zn, Cu, Fe, кг ч 3, 202 0,06 0,006 0,003 0,001 0,78 0,15 0,241 Количество оксидов в циклоне без учета оксидов пос

Количество связующих веществ в исходной шихте
Количество связующих веществ в исходной шихте. Количество WC в шихте, кг ч 166,67 0,76 1,746 2,686 0, 201 134,636 Количество ТЮ в шихте, кг ч 166,67 0,15 0,516 0,336 0,039 25,531 Количество шихты б

Окисление карбидов
Окисление карбидов. Окисление WC Распределение компонента, кг ч огарок 134,636 0,65 87,513 пыль циклона 134,636 0, 20 26,927 пыль рукавного фильтра 134,636 0,15 20, 195 Основная реакция WC 2.5О? WC

Окисление Ге
Окисление Ге. Распределение компонента, кг ч огарок 0,167 0,65 0,108 пыль циклона 0,167 0,2 0,033 пыль рукавного фильтра 0,167 0,15 0,025 Реакции a Fe 0.50? FeO М 55,85 М 16 М 71,85 г моль 1 в огар

Теоретическое количество воздуха
Теоретическое количество воздуха. Суммарное количество кислорода, кг ч 35,03 9,939 11,563 3,55 2,662 1,765 0,865 0,543 0,407 0,182 0,159 0,049 0,037 0,023 0,013 0,009 0,005 0,003 0,008 0,014 0,002

Приход тепла зоны кипящего слоя
Приход тепла зоны кипящего слоя. Физическое тепло при Т 20 С. Теплоемкость шихты WC Ср 12,27 2,06 10 3283 - 2,68 105 1 283 9,51 Дж моль град С 9,51 1000 195,86 84,12 Дж кг град WO3 Ср 17,58 6,79 10

Определение требуемого избытка воздуха
Определение требуемого избытка воздуха. Теплосодержание воздуха при 900 С. Количество влаги 0,012кг. на 1кг. сухого воздуха Oi-23 , N2-77 , следовательно 1кг. влажного воздуха будет содержать кисло

Определение размеров сечения печи
Определение размеров сечения печи. При обжиге в кипящем слое гранул крупностью до 2мм оптимальный расход составляет 750 нм3 ч м2 Оптимальный расход воздуха, выраженный в кг ч м2 определим, приняв с

Надслоевая зона
Надслоевая зона. Приход тепла6.2.1.1. Физическое тепло пыли и газов. 20009,644 357507,298 785538,936 1163055,878 кДж ч 6.2.1.2. Тепло окисления. Первичной пыли в циклонной пыли 1 3 от всей,

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги