Литературный обзор

Литературный обзор. Технически фосфорную кислоту впервые получили более 100 лет назад разложением низкокачественных фосфоритов, содержащих значительные количества соединений трехвалентных металлов, разбавленной (5-10%-ной) серной кислоты, в которой соединения железа и особенно алюминия переходят в раствор в незначительной степени.

Раствор с концентрацией 8-10%. Р2О5 упаривали до содержания в нем ~ 40% Р2О5. При разложении фосфатной породы более концентрированной (30-40%-ной) серной кислотой выделяются игольчатые кристаллы гипса.

Они удерживают значительное количество жидкой фазы и плохо орошаются. Вследствие этого потери Р2О5 велики [1]. Существенным шагом вперед в производстве фосфорной кислоты был переход к установкам непрерывного действия и разбавление 75 и 93%-ной H2SO4 не водой или слабыми промывными водами, а раствором фосфорной кислоты, т.е. проведение процесса с применением раствора разбавления.

В этих условиях выделяются ромбические кристаллы гипса, которые хорошо фильтруются и отмываются. B настоящее время дигидратным способом производят фосфорную кислоту с содержанием 20-25% Р2О5 (обычно из низкосортного сырья - бедных фосфоритов) и 30-32% Р2О5 (из высококачественного сырья - апатитового концентрата и др. Практическое значение имеют температуры выше 60°С. При более низких температурах гидратация полугидрата идет медленно.

При 65-70°С в растворах, содержащих до 32-33% P2О5, полугидрат быстро превращается в гипс. Если, например, при 80°С в растворах, содержащих 10-25% Р2О5, превращение полугидрата в гипс происходит в течение 1-5 ч, то при концентрации 32% Р2О5 в течение значительно более длительного времени в твердой фазе находится полугидрат, а затем появляется даже ангидрит. Поэтому получение такой кислоты дигидратным способом возможно при температуре несколько ниже 80°С. Кроме того, при содержании в кислоте более 32-33% Р2О5 уменьшаются размеры выделяющихся кристаллов гипса.

Это затрудняет фильтрование кислоты и отмывку осадка. Крупные изометричные и однородные кристаллы дигидрата образуются при незначительном (20-40%) пересыщении раствора. При колебании температуры выделяются неоднородные по размерам кристаллы. Образованию более крупных кристаллов способствует поддержание в растворе небольшого избытка сульфат-ионов (плюсовый режим). При наличии в растворе избытка ионов кальция выделяются очень тонкие игловидные кристаллы.

Содержащиеся в высококачественном фосфатном сырье (Кольском апатитовом концентрате, флоридских, алжирских, марокканских и аналогичных других фосфоритах) незначительные количества примесей практически не влияют на качество фосфорной кислоты. Однако при использовании бедных фосфоритов, содержащих менее 30% Р2О5 и значительные количества соединений железа и алюминия, магния, щелочных металлов и других, растворимого кремнезема, нерастворимого остатка и органических веществ, существенно изменяется состав образующейся фосфорной кислоты и ее свойства, а также фильтрующие свойства получаемой суспензии (пульпы). Поэтому при одном и том же практически аппаратурном оформлении технологические режимы осуществления процесса, его интенсивность и надежность, а также качество получаемой кислоты (концентрация Р2О5, содержание примесей и т.д.) существенно отличаются для разных видов сырья.

В отечественной промышленности освоено производство фосфорной кислоты из фосфоритов Каратау и разработана технология применительно к чилисайским фосфоритам. Ведутся лабораторные и опытные исследования экстракции фосфорной кислоты из фосфоритов вятского месторождения и др. Фосфориты Каратау, в том числе и флотационный их концентрат содержат значительное количество нерастворимого остатка и соединений магния.

При полном переходе последних в кислоту в виде сульфата магния концентрация сульфатов в жидкой фазе пульпы будет больше, чем это необходимо для выделения кристаллов сульфата кальция оптимальных размеров и формы.

Регулирование концентрации сульфат-ионов возможно путем распределения подачи серной кислоты по разным точкам системы. В 1969г. был введен в эксплуатацию первый крупный завод по экстракции фосфорной кислоты из фосфоритов Каратау. Первоначально технологический режим был установлен в расчете на переработку флотационного концентрата или богатой фосфоритной муки. Из флотационного концентрата Каратау, содержащего 28% Р2О5 и ~2% MgO (с остатком на сите в 100 мк не более 10-12%), получается кислота состава, в %: Р2О5 – 23-25; SO3 - 3,8-4; Fe2O3 - 1,4-1,5; MgO - 1,5-1,9; F - 1,6-1,8. В последующем для получения экстракционной кислоты в промышленных условиях перешли на богатую фосфоритную муку состава, в %: Р2О5 - 28,0; СаО - 43,4; СО2 - 5,3; MgO - 2,45; Na2O - 0,4; К2О - 0,55; Н2О - 0,18 и F - 2,9. Образующаяся фосфорная кислота содержит в среднем, в %: Р2О5 - 22,4; SO3 – 3,0; СаО - 0,5; MgO -2; R2O3 - 0,9 и F - 2,1. Этот технологический процесс положен в основу разработанной НИУИФом системы экстракции фосфорной кислоты из богатой фосфоритной муки Каратау (28% Р2О5), мощностью 136 тыс.т Р2О5 в год. Она состоит из двух (спаренных) экстракторов с рабочим объемом каждого 850 м3 и из трех карусельных вакуум-фильтров с полезной фильтрующей поверхностью 80 м2 каждый.

На производство фосфорной кислоты требуется (на 1 т Р2О5) фосфатного сырья Каратау (100% Р2О5) - 1,12-1,195 т, серной кислоты (моногидрата) - 3,3-3,6 т, электроэнергии – 270-290 кBtч, воды – 200-250 м3 и фильтровального полотна - 0,15-0,18 м2. Расходные коэффициенты на получение из этой кислоты 1 т аммофоса (43% Р2О5 и 11% N) составляют 0,447 т (100% Н3РО4), 0,144 т NH3 (100%), 8500 м3 природного газа. Переработка бедных забалансовых руд Каратау прямой сернокислотной экстракцией, по-видимому, возможна путем дальнейшего снижения концентрации Р2О5 в жидкой фазе пульпы по мере уменьшения Р2О5 и увеличения содержания примесей в руде. Повышение при этом температуры процесса до 100-105°C приводит к значительному удалению фтористых соединений в виде SiF4, что способствует улучшению кристаллизации и фильтрования фосфогипса.

Выход Р2О5 в кислоту достиг-99%. Так, разложением руды Каратау состава, в %: P2O5 - 18,9; MgO - 3,1; СаО - 32,8; А12О3 - 2,1; Fe2O3 - 1,85;. SiO2 - 25,2 и F - 2,0 - в лабораторных и опытных условиях при 100-105°С, получена кислота, содержащая 16-18% Р2О5, 3-5% SO3 и 0,5-0,6% F. Производительность фильтрования фосфогипса составила 500-700 кг/(м2ч) в расчете на сухой отмытый.

Но полученная в этих условиях кислота почти полностью нейтрализована и может быть использована для производства только низкокачественных удобрений.

Несмотря на существенные усовершенствования, производство фосфорной кислоты из рядовых фосфоритов Каратау - трудный процесс, осложняемый интенсивной инкрустацией трубопроводов подачи пульпы на карусельный вакуум-фильтр, рабочих органов фильтра - головки, фильтровальных сеток, рессиверов, барометрических труб и коммуникаций первого и второго фильтратов, а также хранилищ фосфорной кислоты.

Это приводит к необходимости остановки системы для чистки (производимой в основном вручную) на 12 ч и более через каждые 7-10 суток работы, и относительно кратковременному сроку межремонтной эксплуатации оборудования [2]. Отложения, образующиеся в барометрической трубе и головках фильтра, состоят в основном (50-65%) из кремнефторидов калия (преимущественно) и натрия, а также соединений железа в виде FePO42H2O и FeH3(PO4)22,5H2O (3-11,5% Fe2O3), магния, кальция (в виде сульфата) и др. Чилисайские фосфориты отличаются, помимо низкого содержания Р2О5, большим количеством карбонатов полуторных окислов и нерастворимого осадка.

В одиннадцатой пятилетке, кроме основного сырья (хибинский апатит и фосфориты Каратау, содержащие около 24% Р2О5), намечается освоение чилисайского флотационного концентрата, содержащего 22-24% Р2О5. Фосфорная кислота, полученная из чилисайского флотационного концентрата, характеризуется пониженной концентрацией Р2О5 (20-22%); кроме того, для экстракции необходима повышенная норма серной кислоты (103-105% от стехиометрической, считая на СаО в сырье). С увеличением нормы серной кислоты от 100 до 105-106% (от стехиометрии) степень извлечения Р2О5 увеличивается на 2-3% (от 96 до 98,5%). Это объясняется тем, что образующиеся при разложении фосфаты железа в присутствии серной кислоты (2,5-3,5% SO3) остаются в жидкой Фазе длительное время в пересыщенном состоянии.

В этих Условиях в кислоту переводит 80-85% Fe2O3, содержащейся в сырье.

При недостаточном содержании SO3 (до 2%) Увеличивается количество фосфатов железа в фосфогипс, что приводит к уменьшению степени извлечения Р2О5 в раствор. Оптимальными условиями процесса являются (помимо указанной выше концентрации и нормы серной кислоты температура пульпы в экстракторе 80-82°С, продолжительность обработки пульпы 6 ч, массовое отношение Ж:Т в пульпе 2:1, расход воды для промывки фосфогипса 1000кг на 1 т сухого осадка при температуре ее 80-80°С. При этом коэффициент разложения концентрата составляет 95-97%, коэффициенты отмывки Р2О5 из фосфогипса - 98 и выхода Р2О5 в кислоту – 94-95%. Получаемая кислота плотностью 1300 кг/м3 содержит в %: Р2О5 – 21- 22; SO3 - 2,5-3,5; СаО - 0,4; MgO - 0,7; Fe2O3 - 0,9; Al2O3 -1,2 и F-1,2. В общем цикле переработки природных фосфатов в удобрения или технические соли производство экстракционной фосфорной кислоты является промежуточным технологическим процессом.

Недостаток его - образование кислоты невысокой концентрации и необходимость ее упаривания, а также трудности, возникающие при переработке бедных видов сырья.

В настоящее время накопились многочисленные и всесторонние данные о свойствах модифицированных фосфорнокислых растворов и поведении в них кристаллогидратов сульфата кальция, а также сведения о селективном растворении составных частей фосфатного сырья.

Они послужили основанием различных предложенных способов экстракции фосфорной кислоты из апатитового концентрата и фосфоритов Каратау в сочетании с последующим ее использованием, или с предварительным обезмагниванием бедных доломитизированных фосфоритов для кислотной переработки.

В настоящее время существует два способа получения фосфорной кислоты: полугидратный и дигидратный способы. Полугидратным методом получают кислоту, содержащую 35-48% Р2О5. Это позволяет увеличить мощность действующих цехов в 1,3-1,5 раза и несколько уменьшить количество отхода - сульфатного остатка.

В значительной мере успехи, достигнутые в области изучения и освоения полугидратного метода, основаны на технических усовершенствованиях и достижениях производства экстракционной фосфорной кислоты дигидратным методом. Оба процесса протекают с выделением твердых фаз - дигидрата и полугидрата сульфата кальция в метастабильном состоянии, но резко отличающихся по своей растворимости, устойчивости, размерам и форме кристаллов.

Успешное осуществление процесса полугидратным методом возможно при выделении достаточно стабильных кристаллов полугидрата, обеспечивающих максимально полное отделение фосфорной кислоты от осадка и не гидратирующихся в процессе промывки водой на фильтре и при дальнейшей транспортировке и хранении. Температурные условия процесса зависят от концентрации получаемой кислоты и в области метастабильното существования полугидрата в системе CaSO4Н3РО4Н2О заключены в относительно небольших пределах.

При концентрации кислоты от 35 до 50% Р2О5 верхний диапазон температур изменяется от 10 до 90С. Нижний диапазон, начиная с 70°С, не представляет практического интереса, особенно при содержании в кислоте более 37-40% Р2О5 вследствие малой скорости реакции и затруднений, связанных с отделением осадка от кис лоты большой вязкости. При малой растворимости и медленном растворении полугидрата последний долго дегидратируется и при 115-125С в концентрированной фосфорной кислоте.

Присутствие в растворе 0,5-0,6% фтористых и кремнефтористых соединений приводит к резкому уменьшению размеров кристаллов и замедлению фильтрования в 2 раза. Увеличение содержания фтористых соединений до 1% замедляет фильтрование в 5 раз. Появление кристаллов полугидрата игольчатой формы вызвано торможением роста граней призмы при быстром росте вершинных граней вследствие избирательной адсорбции примеси на гранях растущего кристалла.

Но совместное присутствие в растворе примесей соединений алюминия и ионов фтора вызывает (при содержании до 2% А12О3 и 0,4-0,5% F) образование, более изометричных кристаллов с лучшими фильтрующимися свойствами, чем в отсутствие примесей. Полное превращение полугидрата в гипс в растворах, содержащих 10-18% Р2О5, завершается в течение 1 ч. При содержании в кислоте 25% P2O5 фазовый переход заканчивается в течение 1,5-2 ч [3]. Скорость гидратации полугидрата в значительной степени зависит и от условий его получения. Чем выше концентрация фосфорной кислоты, в которой происходило выделение полугидрата, тем медленнее происходит его оводнение в разбавленных растворах.

В России освоено и налажено в промышленных масштабах производство полугидратным методом фосфорной кислоты концентрации 45-48 и 35-38% Р2О5. Кислоту концентрации 45-48% Р2О5 в небольших масштабах производят по способу, разработанному в НТИ им. Ленсовета совместно с Винницким химическим комбинатом и ЛенНИИГипрохимом.

В основе способа получения 35-38%-ной кислоты на типовых промышленных установках лежат разработки, проведенные в НИУИФе, ЛенНИИГипрохиме, Воскресенском ПО «Минудобрение», на Красноуральском медеплавильном комбинате и др. По способу, предложенному в ВИУИФе, апатитовый концентрат разлагают смесью 92-93%-ной H2SO4 и оборотной концентрированной фосфорной кислоты при 94-95°С с получением кислоты, содержащей 43-48% Р2О5 и 0,7-1,3% SO3. Процесс протекает при интенсивном выделении фторсодержащих газообразных соединений (более 50% от общего содержания в сырье) и степени разложения апатита, равной 97,5%). В настоящее время фосфорную кислоту концентрации 35-37% Р2О5 из апатитового концентрата полугидратным методом по способу НИУИФа и Воскресенского ПО «Минудобрения» получают на ряде предприятий.

Для предварительного смешения серной и фосфорной кислот применяют высокоскоростной смеситель конструкции Воскресенского ПО «Минудобрения» и НИИХиммаша.

Он представляет собой аппарат типа «труба в трубе», выполненный из нержавеющей стали. Во внутреннюю трубу сверху подают разбавленную охлажденную серную кислоту с температурой не более 60°С, которая распределяется форсункой, помещенной на конце трубы. В наружную трубу тангенциально подводят оборотную фосфорную кислоту. Кислоты смешиваются на выходе из трубы над поверхностью пульпы; в экстракторе. Процесс ведут преимущественно с применением цилиндрических, реакторов.

Прямоугольные железобетонные экстракторы с рабочим объемом 740 м3 с годовой производительностью 140 тыс.т Р2О5 представляют большие затруднения в эксплуатации. Экстрактор разделен внутри перегородками на восемь рабочих секций и две дополнительных, изнутри покрыт антикоррозионной защитой. Крышка экстрактора защищена листом из нержавеющей стали. В зоне газовой фазы все секции сообщаются между собой. Над перегородками между нечетными и четными секциями устанавливается специальное устройство в виде вала с лопастью, при вращении которого снимаются отложения геля кремниевой кислоты, образующегося в результате интенсивного выделения фторсодержащих газов в узлах между крышкой экстрактора и перегородками.

С первой по четвертую и в восьмой секциях установлены турбинные мешалки с интенсивной циркуляцией, в пятой, шестой и седьмой секциях - винтовые мешалки. Выделяющиеся в экстракторе фторсодержащие газы и водяные пары протягиваются вентилятором из четвертой секции экстрактора в абсорбционную систему.

Образующуюся пульту из девятой секции отводят погружными насосами в вакуум-испарительную установку. Охлажденная на 3-5°С пульпа из испарителя по барометрическому трубопроводу перетекает в распределительную десятую секцию экстрактора. Основное количество -охлажденной пульпы из десятой секции поступает в первую секцию экстрактора, а остальное - на фильтр. Водяные пары и фторсодержащие газы, выделяющиеся при кипении пульпы в вакуум-испарителе, проходят ловушку-брызгоуловитель, орошаемый водой при помощи форсунки, газоход (для предотвращения зарастания осадком), абсорбционную башню, циклон-сепаратор, поверхностные конденсаторы, а затем вакуум-насосом несконденсировавшиеся пары и газы выбрасываются через выхлопную трубу в атмосферу.

Фильтрование пульпы с четырехкратной промывкой осадка - производится на карусельном вакуум-фильтре с поверхностью 80 м2. Осадок промывают водой с температурой не менее 80°С в количестве ~ 700кг на 1000 кг апатита.

Промытый и подсушенный-воздухом фосфополугидрат выгружают в бункер, откуда вывозят самосвалами в отвал. Получаемая фосфорная кислота содержит 36,5-37% Р2О5. В ЛТИ им. Ленсовета (кафедра технологии неорганических веществ), начиная с 50-х гг были выполнены многочисленные и многосторонние исследования, в результате которых были получены новые данные и расширены, имеющиеся сведения о скорости растворения фосфатов в кислотах, растворимости, пересыщении и кристаллизации твердых фаз в образующихся системах и др. Полученные данные послужили основанием для выбора оптимальных режимов и технологических условий производства фосфорной кислоты содержащей 45-48% P2O5, полугидратным способом.

Отличительная черта этого способа (ЛТИ им. Ленсовета, Винницкого химического комбината и ЛеиНИИГипрохима), используемого уже в течение более 10 лет практически полное разложение апатита в избытке фосфорной кислоты при одновременном удалении из реакционной массы кремнефтористых соединений и обработке полученной монокальций фосфатной пульпы серной кислотой.

Процесс осуществляется в каскаде из 4-5 экстракторов с фильтрованием пульпы на ленточных вакуум-фильтрах. Апатитовый концентрат разлагают в 3,5-4-кратном избытке фосфорной кислоты в расчете на образование Са(Н2РО4)2 при 90-95°С в течение 1,2-1,7 ч. Разложение апатита избытком концентрированной фосфорной кислоты протекает с достаточной скоростью уже при 60-70°С. С повышением температуры до 90-95 °С увеличивается концентрация СаО в жидкой фазе пульпы от 2,5-2,7 до 4,3% и отношение Ж:Т в пульпе, а также уменьшается вязкость раствора и пульпы.

Соотношение между фосфорной кислотой, поступающей с первым фильтратом и циркулирующей пульпой, зависит от отношения Ж:Т в пульте. При Ж:Т = 3:1 с пульпой вводится в ~2,5 раза больше кислоты, чем с первым фильтратом. В фосфорной кислоте, применяемой для разложения апатита, должно находиться не более 0,4% свободной H2SO4. В присутствии больших количеств свободной серной кислоты уменьшается степень разложения апатита и выделяющийся при этой стадии сульфат кальция плохо фильтруется.

В производстве в России и за рубежом по прежнему доминирующее положение занимает дигидратный процесс. В 70-80-е годы основным направлением совершенствования этого процесса является укрупнение единичных мощностей от 55 до 300 тыс.т. Р2О5 в год с одновременной модернизацией и разработкой более совершенного технологического оборудования. К ним относится: повышение надежности узла дозирования фосфатного сырья за счет использования стабилизаторов истечения, предварительное смешение фосфатного сырья с пульпой в скоростных пленочных смесителях; создание режимов с двухзонным сульфатным режимом и интенсивной внешней и внутренней циркуляцией пульпы; улучшение конструкции перемешивающих устройств; усовершенствование методов охлаждения пульпы за счет использования вакуум-испарителя и аппаратов воздушного охлаждения пенного типа; разработка аппаратуры с безопасной циркуляцией жидкости для очистки фторсодержащих газов; модернизация конструкции карусельных вакуум-фильтров.

Однако, не смотря на развитие техники производства ЭФК не удалось существенно интенсифицировать дигидратный процесс – концентрация продукционной кислоты не превышает 28 % Р2О5, а удельный расход фосфогипса находится на уровне 700-800 кг/(м2ч), аналитический (теоретический) выход Р2О5 составляет 96%. Поэтому в мировой практике начали внедрятся в промышленность полугидратные, полугидратно-гидратные и дигидратно-полугидратные способы получения ЭФК. Комбинированные методы предпочтительнее дигидратного вследствие значительного увеличения выхода Р2О5 в кислоту, повышения концентрации ЭФК до 33-35% Р2О5 и получения сульфата кальция, пригодного для дальнейшей переработки. Сложность стабилизации полугидрата и зависимость ее как от постоянных, так и переменных (случайных) параметров обусловливает затруднения в регулировании промышленного процесса производства кислоты в полугидратном режиме, особенно на установках большой мощности.

Это вызвало интерес к двустадийным способам получения фосфорной кислоты, позволяющим повысить на 2,0-2,5% (абс.) степень извлечения Р2О5, получить концентрированную кислоту (до 55%) и использовать сульфат кальция без дополнительной очистки для производства строительных материалов.

На первой стадии процесс ведут с выделением в твердую фазу полугидрата или дигидрата, а во второй стадии перекристаллизовывают полугидрат в дигидрат или дигидрат в полугидрат.

При полугидратно-дигидратном способе на первой стадии выделяется относительно устойчивый полугидрат, не оводняющийся в процессе экстракции.

Во второй стадии полугидрат, не отделенный или после отделения от жидкой фазы, перекристаллйзовывают в дигидрат с выделением крупных, хорошо образованных и быстро фильтрующихся кристаллов. Преимущества указанного способа - максимальная (до 98,5%) степень извлечения из сырья фосфорной кислоты в раствор при минимальном расходе серной кислоты и получение гипса высокого качества, содержащего не больше 0,3% общей Р2О5. По этому способу работают некоторые заводы в Японии и в других странах с максимальной суточной мощностью 200 т (60- 65 тыс.т в 1 год) Р2О5 (кислота содержит 30-32% P2O5). Для выделения негидратирующегося при экстракции полугидрата процесс проводят при повышенных температурах (90-95°С). Фтор-ионы, в отличие от всегда присутствующих в кислоте кремнефторид-ионов, способствуют оводнению полугидрата.

В то же время гидратация полугидрата протекает быстрее, если он получен из фосфорита, содержащего небольшие количества фтористых соединений (~0,3%) и окислов трехвалентных металлов (~0,8%); фтор в этом случае, вероятно, связан в несиликатный комплексный ион. В присутствии серной кислоты концентрация фтор-ионов увеличивается за счет распада кремнефторид-ионов, и при избытке полуторных окислов гидратация ускоряется тем в большей степени, чем больше содержание серной кислоты в растворе.

Она ускоряется также при добавлении к фосфату или в пульпу активного кремнезема при одновременном добавлении ионов калия или натрия.

Перекристаллизация полугидрата ускоряется в присутствии минеральных кислот - серной, азотной, соляной и их натриевых солей, сульфатов лития, аммония, хлорида железа и других. При этом в кислых средах процесс протекает активнее, чем в нейтральных и щелочных, а технический фосфополугидрат, получаемый в производстве фосфорной кислоты, оводняется значительно медленнее, чем искусственно приготовленный «чистый» полугидрат.

Гидратация тонкодисперсного полугидрата происходит интенсивнее, чем крупнокристаллического, при сопоставимых содержаниях в осадке фосфорной кислоты [4]. Скорость гидратации полугидрата зависит и от многих других факторов - содержащий в осадке воднонераcтворимой Р2О5, захваченной Р2О5 в присутствии в растворе привнесенных из апатитового концентрата соединений стронция и церия. При содержании последних в растворе в количестве 3,8-7,0% SrO или 1,8-2,8% Се2О3 гидратация замедляется в ~20 раз по сравнению с чистыми растворами, но полностью завершается в течение не более 6-7 ч. Большая скорость превращения полугидрата в дигидрат наблюдается при 50-60°С и содержании в растворе 5-8% H2SO4 вследствие, по-видимому, максимальной скорости растворения и растворимости кристаллогидратов в этих условиях.

При дигидратно-полугидратном способе перекристаллизацию дигидрата в полугидрат рассматривают в качестве одного из путей перевода действующих систем с дигидратного на полугидратный режим.

В статических условиях (добавлением в экстрактор с дигидратной пульпой упаренной фосфорной кислоты при одновременном повышении температуры до 95-98°С) при содержании в кислоте 38-42% Р2О5, 2% SO3 и 98°С дигидрат полностью переходит в полугидрат за 1,5-4 ч. При непрерывном ведении процесса с подачей сырья и отводом полугидратной пульпы на фильтрование время перекристаллизации сокращается в ~1,5-2 раза. Процесс может быть проведен следующим образом.

Природный фосфат разлагают смесью серной и фосфорной кислот при 50-70°С с получением кислоты концентрацией до 39% Р2О5. Из полученной пульпы отделяют (без промывки гипса) декантацией продукционную кислоту (33-38% Р2О5). Отстоявшуюся гипсовую суспензию смешивают в дегидраторе с концентрированной серной кислотой или смесью ее с фосфорной кислотой. В жидкой фазе суспензии содержится 20-30% Р2О5 и 10-20% H2SO4. При этом температура повышается до 75-85°С, что способствует быстрой перекристаллизации дигидрата в полугидрат, протекающей со скоростью, значительно превышающей скорость обратного перехода. В этих условиях промытый полугидрат содержит всего ~0,2% общей Р2О5 и в том числе 0,01% водорастворимой, а также 0,1% F. В 1985-190 гг. в НИУИФ проводились поисковые и полупромышленные (в опытном цехе Воскресенского филиала НИУИФ) испытания дигидратно-полугидратного процесса получения ЭФК из Кольского апатитового концентрата и фосфоритов Каратау.

Они показали возможность выпуска ЭФК концентрацией до 33% Р2О5 с одновременным увеличением выхода Р2О5 до 97-98% и получения полугидрата сульфата кальция в виде квалифицированного вяжущего.

Однако внедрение процесса в промышленность тормозится отсутствием средств для капитальной реконструкции технологической системы. Таким образом, наиболее перспективным для нашей промышленности является одностадийный полугидратный процесс, основные преимущества которого заключаются в возможности получения концентрированной фосфорной кислоты (35-37% Р2О5 против 26-30% Р2О5 в дигидратном процессе) и увеличение эффективности стадии фильтрации пульпы в 1,5-2 раза по сравнению с дигидратным способом.

Применение в качестве исходного фосфатного сырья Кольского апатитового концентрата и полугидратной технологии представляется наиболее благоприятной также потому, что входящие в состав апатита минералы, содержащие редкоземельные элементы и стронций, существенно замедляют процесс перекристаллизации полугидрата сульфата кальция в дигидрат. 2.1. Характеристика исходного сырья Сырьем для получения фосфорной кислоты являются ортофосфаты – соли ортофосфорной кислоты.

Содержащийся в ортофосфатах ион РО43- имеет структуру тетраэдра, расстояние Р-О составляет 1,54-1,60Å. Известны однозамещенные (например, КН3РО4, Са(Н3РО4)2 и др.), двузамещенные (например, (NH4)2НРО4, NH4NаНРО4 и т.д.) и трехзамещенные (например, Са3(РО4)2, NH4MgPO4 и т.д.) ортофосфаты. При прокаливании кислых ортофосфатов в зависимости от условий нагревания образуются кольцевые мета- или цепные полифосфаты.

Однозамещениые ортофосфаты растворимы в воде, из двузамещенных и трехзамещенных растворимы только соли щелочных металлов и аммония. В водных растворах ортофосфаты щелочных металлов гидролизуются. Большинство ортофосфатов, кроме ортофосфатов Bi, Sn, Ti, Zr, Hf, Th, растворимы в сильных кислотах. Растворимые в воде ортофосфаты получают добавлением необходимых количеств Н3РО4 к растворам гидроокисей или карбонатов, нерастворимые ортофосфаты получают с помощью реакции обмена.

Ортофосфаты Ca, NH4+ используются в производстве фосфорных удобрений, эмалей, матовых стекол, в фармацевтической промышленности, в производстве огнестойких материалов. 2.2.