рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Получение чистых цветных металлов

Работа сделанна в 2003 году

Получение чистых цветных металлов - раздел Химия, - 2003 год - Роль химии в создании сверхчистых материалов Получение Чистых Цветных Металлов. Руду Цветного Металла Добывают Из Земли И ...

Получение чистых цветных металлов. Руду цветного металла добывают из земли и очищают от большей части пустой породы.

Но даже лучший, стопроцентный рудный концентрат – только сырьё. Его можно назвать сверхчистым концентратом, но металл в нем соседствует с большим количеством примесей. Чтобы получить чистый и сверхчистый металл, его нужно извлечь из искомого концентрата. При обогащении руды разрушаются сравнительно слабые связи минералов в природе. Теперь же нужно вторгнуться внутрь минерала, внутрь соединения, порвать крепчайшие химические связи между элементами.

Тут не обойдёшься действием центробежной силы или пузырьков пены, что применялось на обогатительных фабриках. Нужны более мощные средства. И, прежде всего высокие температуры. Та отрасль металлургии, которая их использует, носит имя пирометаллургии (от слова, означающего в переводе с греческого «огонь»). Главные спутники цветных металлов в рудах – сера и кислород. Их-то и нужно удалить.

Сначала попытаемся «расправиться» с серой. Металлы так прочно связаны с ней, что «соглашаются» только на обмен – место серы должен занять другой элемент. Обычно им оказывается кислород. А проходит эта реакция обмена при обжиге руд – сера выгорает, её место занимает кислород. Для меди существует специальный процесс – зонная плавка, при котором энергию горения обеспечивает сама сера, подлежащая удалении. Зонной плавкой получают также чистые кремний и германий – основные материалы для полупроводников (их можно получать и электролитическим осаждением). Но вернемся к процессу удаления серы. В конечном счёте, перед металлургом опять окисел – только на этот раз не природный, а искусственный. Наступает самый ответственный момент – «прощание» с кислородом.

Принцип очень прост: кислороду «предлагают» какой-нибудь «лакомый» для него элемент – углерод, водород, кремний. А хром, титан, марганец, например, можно освободить от кислорода с помощью более дешёвого, чем они, алюминия.

Называется этот процесс восстановлением металлов из руд. Для того чтобы он мог идти, пускают в ход высокие температуры, расплавляя руду. Попробуйте смешать в бутылке воду и растительное масло. Как ни перемешивай, масло, в конце концов, всплывёт. Вот так же не могут смешаться в расплаве и всплывают наверх более лёгкие, чем металл, жидкие шлаки. Внизу, под их слоем расплавленный металл. Всё это происходит в огромной печи, внутрь которой вдуваются топливо и воздух, а на поду плавится под действием пламени концентрат. Выходят из печи отдельно жидкие шлаки и жидкий штейн – так называют смесь меди с железом, серой, серебром, золотом, никелем и т. д. Штейн поступает от печи в конвертеры.

В них, как и при переработке чугуна, через штейн продувается воздух. Так выжигается сера, удаляется железо. Но уходят на это не минуты, как в конвертерах для чугуна, а часы, часто даже десятки часов. Зато теперь вместо штейна получается черновая медь. Примесей в ней только 1…2%, а не 70…80%, как в штейне.

Но и эти маленькие проценты не устраивают технику. Снова пускается в ход огонь. Следующая стадия очистки меди так и называется – огневое рафинирование. Опять выжигаются остатки серы и некоторых других элементов. И опять при этом часть меди окисляется. Чтобы вернуть меди свободу от кислорода, в ванну с расплавом погружают деревянные жерди, словно дразнят медь. Это так и называется – дразнение. Дерево отбирает у меди кислород. Теперь примесей уже только десятые доли процента.

Когда-то с этим приходилось мириться. Теперь можно идти дальше. Медь отправляется на электролиз. Брусок очищаемой меди помещается в электролитическую ванну в качестве анода. Электрический ток транспортирует к катоду только атомы меди. Золото, платина, серебро опускаются на дно ванны. Они тоже не пропадут. Все большее значение приобретает сейчас хлорирование металлов. Руду цветного металла, например, олова, обрабатывают хлором. Затем задача уже не в восстановлении металла, не в освобождении его от кислорода, а в разрушении соединения металла с хлором.

Это проще и не требует таких высоких температур. Поэтому и распространяется этот метод, несмотря на один недостаток хлора – едкость. В частности, по химической реакции TiCl4 + 2Mg = Ti + 2MgCl2 на подавляющем большинстве заводов получают титан. А вот рядом с нами в поселке Донском на химико-металлургическом заводе (теперь это химико-металлургическая фабрика комбината им. Ильича) титан получают гораздо более чистым, чем при хлорировании.

Для этого вместо хлора используют йод. К сожалению, получаемый очень чистый титан имеет высокую цену, из-за чего его производство сейчас приостановлено, что является дополнительным подтверждением сделанного ранее вывода о необходимости экономического критерия выбора методов очистки. Но вернемся к электролизу. Он помогает металлургам и в получении алюминия из расплавленного соединения металла с кислородом. Очень сложную задачу поставил в свое время перед металлургами этот важнейший из цветных металлов.

Его рудный концентрат – глинозем (окись алюминия) – плавится при очень высокой температуре – две с лишним тысячи градусов. Почти на 10000 выше точки плавления меди. Чтобы понизить температуру плавления, пришлось искусственно понижать концентрацию алюминия в электролитической ванне – растворять глинозем в расплавленном минерале криолите. Точка плавления раствора чуть ниже 10000С. А это уже устраивает металлургов. Правда, природного криолита на земле так мало, что минерал этот приходится изготовлять искусственно. Но и это все равно дешевле, чем каждый раз нагревать чистый глинозем.

В раскаленном растворе молекулы глинозема распадаются на составные части – атомы алюминия и атомы кислорода. Электрический ток захватывает атомы алюминия и транспортирует их на катод. В данном случае катодом служит дно самой ванны с глиноземно-криолитовым расплавом. На примере получения чистого алюминия показана решающая роль химии в получении чистого алюминия. В частности, специалистам в области химии пришлось: 1) создать новый материал – криолит; 2) создать новую смесь «глинозем+криолит»; 3)создать новую технологию извлечения алюминия из указанной выше смеси.

Титан и магний, кальций и бериллий, и многие другие металлы часто получают с помощью электролиза, разлагая их расплавленные соли. Но для того, чтобы сделать эти соли жидкими, опять требуются высокие температуры. Однако металлурги в ряде случаев умеют обходиться без такого сильного нагрева.

Кроме пирометаллургии, существует гидрометаллургия. Тут металл также переводится в жидкость, но не огнем, а с помощью химического растворителя. Им могут оказаться и просто вода, и растворы кислот, щелочей, солей, и сложные органические жидкости. Извлечь чистый металл из раствора его соединения сравнительно легко. В одних случаях пускают в ход электролиз. В других прибегают к обменным химическим реакциям. Вновь основная заслуга в очистке материала принадлежит химии. Если опустить в жидкий медный купорос кусок железа, хотя бы старое бритвенное лезвие, на нем начнет осаждаться медь. В обмен в раствор уходят ионы железа.

Тот же по существу процесс идет в заводских масштабах на многих предприятиях, получающих медь. Особенно широко применяется гидрометаллургия при переработке комплексных руд. В нашей стране есть комбинаты, которые из одного месторождения добывают 8, 11, 14 химических элементов. А химики Германии на уникальном месторождении – Мандсфельдских нефтяных сланцах – получают даже сразу 25 элементов.

Когда в каждом кубическом сантиметре руды есть, скажем, и марганец, и кобальт, и молибден, и еще добрый десяток ценнейших элементов, куда легче отделить металлы в целом от пустой породы, чем друг от друга. И вот рудный концентрат поочередно обрабатывается сильными реактивами. Стремятся к тому, чтобы в каждой жидкости растворились соединения только одного металла, выделить который уже не составляет большого труда. Что касается гидропроцессов, используемых для очистки и получения чистых материалов, особый интерес представляют ионообменные процессы, осуществляемые с помощью ионообменных смол. 3. Ионный обмен Когда говорят о чистоте воды, обычно подразумевают родниковую воду, озеро Байкал с его огромными запасами пресной воды. Однако при ближайшем рассмотрении речь идет не столько о чистой воде, сколько о пресной и вкусной воде. Сверхчистая вода обычно образуется при дистилляции, но это, на мой взгляд, физический процесс, и его мы рассматривать не будем.

Сверхчистую по отдельным показателям воду можно получить и химическими методами воздействия.

Раньше анализ воды подразумевал определение ее основности, жесткости, содержания хлоридов и кислорода. Сейчас в зависимости от государства в пресной воде определяют от примерно двух десятков (в Украине, России) до почти четырех десятков элементов (США, страны Западной Европы), но, по-прежнему, первостепенными показателями воды являются ее основность и жесткость. Раньше жесткость воды в промышленных масштабах понижали очисткой ее от солей кальция и магния с помощью, например, олеата калия.

Растворенные в воде соли жесткости при действии олеата калия превращаются в малорастворимые в воде магниевые и кальциевые соли олеиновой кислоты: 2C17H33COO + Ca = Ca (C17H33COO)2 2C17H33COO + Mg = Mg (C17H33COO)2 Сейчас такой процесс очистки воды считается анахронизмом. Более эффективная очистка воды достигается с использованием ионообменных смол. Синтетических смол химиками создано великое множество. И, пожалуй, одними из самых удивительных среди них являются ионообменные смолы, или иониты.

Эти смолы обладают редкой способностью: активно вступая в химическое взаимодействие с различными веществами, они быстро и тщательно очищают от них различные растворы. Применяются иониты, например, для очистки воды, поступающей в водопроводную сеть многих городов. Пропуская через иониты морскую воду или другой раствор, их можно освободить от растворенных солей, то есть сделать то, что с помощью обычных фильтров сделать невозможно.

Синтетические иониты не растворяются ни в кислотах, ни в щелочах; через них можно фильтровать растворы, имеющие температуру около 1000С. Они делятся на две основные группы. Иониты одной группы взаимодействуют с ионами, заряженными положительным электричеством (катионами) это катиониты. Другие, взаимодействующие с анионами, называются анионитами. От обычных синтетических смол иониты отличаются тем, что они обладают свойствами кислот и щелочей.

У катионитов – кислотные свойства, у анионитов – щелочные. Как действуют иониты? Известно, что молекулы многих веществ в воде распадаются на отдельные атомы или группы атомов, несущие электрические заряды (электрическая диссоциация). Такие микрочастицы называются ионами. Это атомы, потерявшие или, наоборот, присоединившие к себе лишние электроны. А поскольку ионы несут электрические заряды, ими можно управлять. Иониты улавливают эти ионы, работая как своеобразная ловушка (см. рис.1). Рис.1. Ионная ловушка.

Иониты уже трудятся в самых различных областях народного хозяйства. Исключительно полезными помощниками они оказались, например, на сахарных заводах. По ходу производства здесь необходимо тщательно очищать от нежелательных примесей свекловичный сок. Старый способ очистки сока сравнительно сложен и, главное, связан с большими потерями сахара. Применили иониты, и на том же оборудовании выход продукции повысился сразу на 8-10%. На металлургических комбинатах им. Ильича и «Азовсталь» иониты используются в теплоэлектроцентралях для очистки воды. В последнее время ионообменные смолы стали применять при очистке воды на ликероводочных заводах, фабриках по производству соков.

С замечательной добросовестностью «вылавливают» иониты серебро, уходящие вместе с промывными водами с копировальных фабрик, из фотолабораторий, рентгеновских кабинетов. Пропустить все эти «серебряные реки» через иониты – все равно, что открыть новое крупное месторождение этого ценного металла.

С такой же добросовестностью эти иониты «выуживают» из растворов примеси золота, меди и многих других ценных металлов. Очистка паровых котлов от накипи – дело трудоемкое и обходится государству недешево. Пропущенная через ионитовые фильтры вода становится настолько «мягкой», что котел может работать во много раз дольше. Нельзя забывать и другого. Обеспечивая высокую степень очистки различных материалов, иониты позволяют совершенствовать многие производственные процессы, способствуют прогрессу во многих отраслях хозяйства.

В машиностроении и теплоэнергетике, гидрометаллургии, радиотехнике, пищевой промышленности – всюду теперь несут полезную службу иониты. А ведь семейство этих чудесных полимеров все растет. Новые иониты находят новое применение. Ученые поговаривают даже о том, что в будущем иониты будут извлекать золото из морской воды! И это будет экономически выгодно.

– Конец работы –

Эта тема принадлежит разделу:

Роль химии в создании сверхчистых материалов

В древности это происходило двумя путями: осознанно или стихийно.Нас, естественно, интересует первый путь. Примером осознанного использования… Революционные преобразования в жизни человека внес огонь. Человек начал… Другими словами, исключительная чистота получаемых материалов обеспечивается, в первую очередь, протеканием…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Получение чистых цветных металлов

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Эта работа не имеет других тем.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги