рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Химические свойства

Работа сделанна в 2007 году

Химические свойства - Курсовая Работа, раздел Химия, - 2007 год - Синтез бензальацетона Химические Свойства. Реакции С Водой И Спиртами. При Присоединении К Альдегид...

Химические свойства. Реакции с водой и спиртами. При присоединении к альдегидам воды образуются гидраты (1,1-диолы). В большинстве случаев это равновесие сильно сдвинуто влево, в сторону исходных реагентов, так что выделить геминальные диоксисоединения невозможно (правило Эрленмейера). Тем не менее такие реакции, как олигомеризация формальдегида и ацетальдегида, протекают с участием гидратов.

Соединения, у которых по сосед¬ству с карбонильной группой находится электроноакцепторный заме¬ститель, образуют устойчивые гидраты.

Примерами таких соединений служат хлораль, трикетоиндан и аллоксан[4]. Присоединение к альдегидам спиртов приводит к полуацеталям, их образование катализируется кислотами и основаниями. В присутствии сильных кислот в результате дальнейшей реакции с новой молекулой спирта образуются ацетали. Получить кетали из кетонов, присоединяя к ним спирты, нельзя, поскольку равновесие сильно сдвинуто влево. Однако простейшие кета¬ли можно получить при взаимодействии кетонов с ортоэфирами муравьиной кислоты (Хельферих, 1924 г.). В кислой среде ацетали и кетали гидролизуются до альдегидов и кетонов.

Однако по отношению к основаниям они стабильны и исполь¬зуются для защиты карбонильной группы. 2. Реакция с тиоспиртами. При взаимодействии альдегидов и кетонов с тиоспиртами (меркаптанами) можно получить меркаптали. С этандитиолом-1,2 образуются циклические меркаптали (1,3-дитиоланы). В присутствии скелетного никеля 1,3-дитиоланы подвергаются гидрогенолизу. Таким путем карбонильные соединения можно восстановить до углеводородов. 3. Образование бисульфитных соединений.

При обработке кон¬центрированным водным раствором бисульфита натрия альдегиды и кетоны образуют соли оксисульфокислот, так называемые бисульфитные соединения. Бисульфитные соединения плохо растворимы и используются для отделения альдегидов и кетонов. Нагревание этих соединений с разбавленными кислотами или с водным раствором карбоната натрия приводит к регенерации карбонильных соединений. 4. Реакции с аминосоединениями.

Соединения структуры Z—NH2 легко присоединяются к альдегидам и кетонам. Однако в большинстве случаев продукты присоединения неустойчивы и легко дегидратируются через промежуточные карбений-иммониевые ионы. При взаимодействии альдегидов с аммиаком, протекающем через стадию малостабильных альдегидаммиаков, образуются альдимины. Альдимины обычно тримеризуются в гексагидро-1,3,5-триазины. Реакция с формальдегидом протекает сложнее. Бензальдегид также реагирует иначе, взаимодействие его с аммиаком приводит к гидробензамиду.

В случае таких кетонов, как ацетон, аммиак вызывает альдольную реакцию. Образующиеся при этом димеры или тримеры далее реагируют с аммиаком с образованием диацетонамина (4-амино-4-метилпентанона-2) или триацетонамина (2,2,6,6-тетраметил-пиперидон-4). Первичные амины конденсируются с альдегидами в азометины (основания Шиффа). В большинстве случаев азометины представляют собой кристалли¬ческие соединения и используются для выделения, очистки и идентифи¬кации альдегидов.

Большее значение для этой цели имеют гидразоны, фенилгидразоны, 4-нитрофенилгидразоны и 2,4-динитрофенилгидразоны, образующи¬еся при взаимодействии альдегидов и кетонов с гидразином или со¬ответствующим замещенным гидразином. При реакции с гидразином могут получаться также кристаллические азины. При нагревании с гидроксидом калия в триэтиленгликоле до ~200°С или при действии трет-бутилата калия в диметилсульфоксиде гидразоны теряют азот и образуют углеводороды (реакция Вольфа—Кижнера, 1912 г.). Реакция, вероятно, протекает по следующему меха¬низму: Гидроксиламин, а также семикарбазид конденсируются с альдеги¬дами и кетонами.с образованием соответственно оксимов и семикарбазонов, также используемых для идентификации карбонильных соедине¬ний. Азометины, гидразоны, азины, оксимы и семикарбазоны более или менее легко могут быть гидролизованы обратно до исходных карбо¬нильных соединений.

Регенерация кетонов из 2,4-динитрофенилгидразонов легче всего осуществлять нагреванием с гидратом толуол-4-сульфокислоты в хлороформе.

Оксимы, кроме того, являются проме¬жуточными продуктами в ряде синтезов. Например, (Z)-альдоксимы дегидратируются до нитрилов. В противоположность этому (E)-диастереомеры вследствие стереоэлектронных эффектов не вступают в реакцию; в условиях дегидратации эти соединения пре¬терпевают перегруппировку Бекмана до N-замещенных формамидов. В присутствии серной кислоты, хлорида фосфора(V), полифосфор¬ной кислоты или других катализаторов кетоксимы также претерпевают перегруппировку Бекмана (1886 г.) с образованием N-замещенных ами¬дов карбоновых кислот.

На примере оксимов несимметричных кетонов установлено, что при этом имеет место анти-перегрупаировка: гидро-ксильная группа меняется местами с остатком, находящимся к ней в транс-положении. При действии на альдегиды и кетоны вторичных аминов первоначально также протекает присоединение. Если в α-положении к карбонильной группе имеется протон, то нестабильное промежуточное соединение стабилизуется, отщепляя воду и образуя енамин.

Енамины являются очень реакционноспособными соединениями и используются во многих синтезах. Если, как в случае бензальдегида, в α-положении к карбонильной группе не имеется атома водо¬рода и, таким образом, отщепление воды невозможно, ТО промежуточно образующийся карбений-иммониевый ион присоединяет вторую молеку¬лу амина с образованием аминаля. 5. Циангидринный синтез Присоединение синильной кислоты в присутствии основных катализаторов к альдегидам и некоторым кетонам приводит к циангидринам (α-оксинитрилам). Под действием щелочей циангидрины расщепляются, при кислом гидролизе образу¬ют α-оксикарбоновые кислоты. 6. Альдольная реакция Взаимодействие альдегидов или кетонов (карбонильная компонента) самих с собой или с другими альдегидами и кетонами, выступающими в качестве С—Н-кислотной компоненты (метиленовой компоненты) с образованием (β-оксикарбонильных соедине¬ний, называют альдольной реакцией.

Кислоты и основания катализиру¬ют эту реакцию.

Например, в присутствии гидроксидов щелочных или щелочноземельных, металлов из ацетальдегида образуется ацетальдоль («аль» от альдегида и «ол» от спирта) 3-оксибутаналь. Какая из стадий реакции (первая или вторая) будет определять скорость всего превращения, зависит от кинетической кислотности метиленовой компоненты и от электрофильности карбонильной компонен¬ты. В случае альдолыюй реакции с ацетальдегидом наиболее медленной является первая стадия, в случае ацетона из-за меньшей реакционной способности его карбонильной группы — вторая стадия.

При повышенных температурах часто протекает дегидратация, при¬водящая к α,β-непредельным соединениям. Так, из ацетальдоля полу¬чают кротоновый альдегид. При кислотном катализе альдольная реакция протекает через енольную форму, причем отщепление воды наблюдается почти всегда. Примером альдолыюй реакции между различными альдегидами является образование пентаэритрита из ацетальдегида и формальдеги¬да в присутствии гидроксида кальция.

При этом в заключение протекает перекрестная реакция Канниццаро между об¬разовавшимся альдегидом и молекулой формальдегида. Аналогично альдегидам реагируют и кетоны, например: Как и в случае реакции бензальдегида с ацетоном, кетоны при реакции с альдегидами всегда играют роль метиленовой компоненты. В последнее время предпочитают использовать азометины альдегидов, поскольку для альдегидов, содержащих в α-положении атом водорода, предпочтительной является самоконденсация.

По схеме альдольной реакции протекают реакции и других С-Н-кислотных соединений с карбонильными соединениями. К ним отно¬сятся конденсация Кневенагеля, реакция Перкина и синтезы оксиранов (глицидный синтез) по Дарзану. 7. Бензоиновая конденсация При действии водно-спиртовых рас¬творов цианида калия арилальдегиды димеризуются в α-оксикетоны. Из бензальдегида образуется бензоин.

Считается доказанным следующий механизм этой реакции: Как и в альдольной реакции, карбанион присоединяется к альдегиду. Алифатические альдегиды дают в этих условиях не ацилоины, а альдоли, образования ацилоинов из этих соединений можно добиться, используя ферменты определенных видов дрожжей. 8. Реакция Канниццаро (1853 г.) Альдегиды, не содержащие в α-положении к карбонильной группе атома водорода, т. е. преимуще¬ственно ароматические альдегиды, в присутствии гидроксидов щелочных или щелочноземельных металлов диспропорционируют до спирта и кислоты.

В случае альдегидов, имеющих α-атом водорода, гораздо быстрее протекает альдольная реакция. Формально атом водорода одной моле¬кулы альдегида в виде гидрид-иона переносится к связи С=О другой молекулы. Начинается этот процесс с присоединения гидроксил-иона. Затем с участием атома металла образуется комплекс, внутри которого и происходит гидридный перенос. Если в реакции принимают участие два различных альдегида, то говорят о перекрестной реакции Канниццаро.

В таком случае формаль¬дегид всегда играет роль донора гидрид-иона. 9. Реакция Кляйзена — Тищенкр (1906 г.) При взаимодействии любых альдегидов с алкоголятом алюминия происходит гидридный перенос, поскольку основность этого реагента недостаточна для осуще¬ствления альдольной реакции. В результате образуются сложные эфиры карбоновых кислот. Реакция также протекает через образование комплекса. 10. Восстановление по Мейервейну—Пондорфу—Верлею (1925, 1926 гг.) В обращение окисления по Оппенауэру, при нагревании альдегидов и кетонов с каталитическими количествами изопропилата алюминия в растворе изопропанола происходит их восстановление, соответственно до первич¬ных и вторичных спиртов.

В образующемся комплексе происходит гид¬ридный перенос от алкоксид-иона на карбонильное соединение. При этом устанавливается равновесие, сдвиг которого вправо осуществляют за счет непрерывной отгонки ацетона из реакционной смеси. 11. Аминометилирование (реакция Манниха, 1917 г.) Кетоны, содержащие в α-положении атом водорода, как С-Н-кислоты аминометилируются при взаимодействии с формальдегидом (или дру¬гими альдегидами) и аммиаком или при взаимодействии с первичными или вторичными аминами. Реакция в большинстве случаев проводится в присутствии кислот, хотя возможен и основной катализ.

Первоначально образуется карбений-иммониевый ион, реагирующий далее с енольной формой кетона. Конечные продукты реакции Манниха называют основаниями Манниха. 12. Пинаконовое восстановление При восстановлении кетонов натрием или амальгамами натрия или магния образуются 1,2-диолы (пинаконы, важнейшие спирты и фенолы, пинакон). К тем же результатам приводит и электрохимическое восстановление (катодное восстановление). Такого типа реакции идут на поверхности металлов и протекают через анион-радикалы, так называемые кетилы.

Бензальдегид при реакции с амальгамой натрия или цинка также может быть превращен в 1,2-диол. 13. Восстановление по Клёменсену (1913 г.) При реакции с амальгамированным цинком и концентрированной соляной кислотой альдегиды и кетоны превращаются в углеводороды. 14. Окисление альдегидов Альдегиды очень легко окисляются до карбоновых кислот, являясь таким образом восстановителями.

Так, они восстанавливают аммиачный раствор нитрата серебра (реактив Толленса) до серебра, а щелочной раствор гидроксида висму¬та (III) с добавкой комплексообразователя — винной кислоты (реактив Ньюленда) — до металлического висмута.

Алифатические альдегиды выделяют оксид меди(I) из щелочного раствора гидроксида меди(II), содержащего в качестве комплексообразователя тартрат калия-натрия (реактив Фелинга). На воздухе бензальдегид подвергается автоокислению до бензой¬ной кислоты. В данном случае протекает радикальный процесс, идущий через промежуточное образование среди других бензоильных радикалов и пербензойной кислоты. 15. Реакция Вильгеродта — Киндлера (1887, 1923 гг.) При на¬гревании алкиларилкетонов в запаянных ампулах с водными раствора¬ми полисульфида аммония или, проще, с серой и первичными или вторичными аминами (чаще всего с морфолином) образуются амиды ω-арилкарбоновых кислот или сами кислоты.

Механизм этой реакции очень сложен, промежуточно образуются енамины (Майер, 1964 г.). Выводы Таким образом, в данной работе рассмотрен бензальацетон, его свойства, способы получения и применение. Взаимодействием бензальдегида с ацетоном получен бензальацетон с выходом …г или …% масс. от теоретического.

Определена температура плавления, показана сходимость полученных данных с литературными, а следовательно, очень низкая доля примесей в полученном бензальацетоне и чистота продукта синтеза.

– Конец работы –

Эта тема принадлежит разделу:

Синтез бензальацетона

Вызывает раздражение кожи. Температура плав¬ления 42°С; молекулярная масса 148; температура кипения 260°С; 126 °С (9 мм. рт. ст.); d1515—1,0377;… Бензальацетон производился в СССР с 1929 года. Количественное определение… Бензальдегид свежеперегнанньй 10 мл; ацетон 20 мл; гидроксид натрия (10%-ный раствор); соляная кислота; бензол.При…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Химические свойства

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Методика синтеза
Методика синтеза. Реактивы. Бензальдегид свежеперегнанньй 10 мл; ацетон 20 мл; гидроксид натрия (10%-ный раствор); соляная кислота; бензол. При работе с бензальацетоном необходимо соблюдать

Литературный обзор
Литературный обзор. Способы получения Получение альдегидов и кетонов Поскольку как альдегиды, так и кетоны содержат карбонильную группу, то многие методы их получения сходны. Наряду с этим суще¬ств

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги