Теория Вернера

Теория Вернера. г.). Основные положения теории А. Вернер вывел, рассматривая соединения, которые либо являются аддуктами солей с нейтральными молекулами, либо двойными солями: Видно, что в таких соединениях число нейтральных молекул, присоединяющихся к соли металла, чаще всего равно 4 или 6. Из рассмотрения этих рядов Вернер вывел следующие положения: 1. Большинство элементов проявляют два типа валентности: (а) - главную валентность и (б) - побочную валентность.

В современной терминологии (а) соответствует степени окисления и (б) – координационному числу. 2. Каждый элемент стремится насытить как главную, так и побочную валентности. 3. Побочная валентность направлена к точно фиксированным положениям в пространстве. Итак, в координационной химии мы имеем дело с металлом-комплексообразователем (или группой металлов – это уже кластерная химия). Атомы, окружающие металл-комплексообразователь, называются лигандами.

Лиганды, связанные с комплексообразователем, образуют внутреннюю координационную сферу комплекса (эта часть молекулы записывают в квадратных скобках). Все остальное в комплексном соединении представляет собой внешнюю координационную сферу (записывают за квадратными скобками). Примеры: в [Co(NH3)6]Cl3, K2[PtCl4] и т.д. Важно отметить: комплексы не теряют своих свойств при переходе из одной фазы в другую, например, при растворении соединения внутренняя координационная сфера остается без изменений.

КООРДИНАЦИОННАЯ СВЯЗЬ Природу координационной связи рассматривают, исходя из теории Льюиса о двухэлектронной связи. 1. Двухэлектронная связь 1916 г Льюис постулировал: Связь между двумя атомами А и В осуществляется в результате совместного обладания парой электронов.

Если каждый атом отдает в общее пользование 1 электрон, эта связь называется ковалентной связью. Если связь осуществляется также парой электронов, но при этом пару электронов поставляет один атом (донор), а второй атом (акцептор) принимает эту пару на свободную орбиталь, то такая связь называется координационной.

Льюис ввел понятие кислот и оснований в зависимости от способности вещества принимать или отдавать пару электронов. Кислотами называют вещества, молекулы которых способны принимать электронные пары, а основаниями – вещества, способные их отдавать. В результате кислотно-основной реакции происходит образование координационных связей и координационного соединения: А + :В → А:В Кислота Основание Координационное (акцептор) (донор) соединение В соответствии с кислотно-основной теорией Льюиса к кислотам относятся ионы металлов, а также такие соединения, как BF3, AlCl3, SO3 и SiF4, которые могут принимать электронные пары. Лиганды отдают свои электронные пары в общее пользование с металлами и, таким образом, по Льюису сами являются основаниями.

Примеры: Молекулы : Ионы: Из картинок ясно, что en и EDTA способны реагировать как соответственно бидентатный и гексадентатный лиганды. Атом, содержащий более одной неподеленной пары электронов, может служить мостиковым лигандом: ПРАВИЛО ЭФФЕКТИВНОГО АТОМНОГО НОМЕРА ЭАН (ПРАВИЛО СИДЖВИКА) Правило: В комплексных соединениях центральный атом металла будет окружать себя таким числом лигандов, что общее число электронов в атоме металла будет таким же, как и в атоме ближайшего инертного газа. Число электронов в атоме металла-комплексообразователя называют эффективным атомным номером (ЭАН). Пример: ЭАН для Co(III) в [Co(NH3)6]3+ равен: Co - атомный номер 27, имеет 27 электронов Co(III): 27-3 = 24; 6(:NH3) 2x6 = 12; 24+12 = 36 (ЭАН для Co(III) в [Co(NH3)6]3+ Другая трактовка: В комплексных соединениях центральный атом металла будет окружать себя таким числом лигандов, чтобы число электронов во внешней электронной оболочке было равно 18. Для описания природы связи в комплексах в настоящее время используют три теории: 1) метод валентных связей (МВС); 2) теория кристаллического поля (ТКП); 3) метод молекулярных орбиталей (ММО). Ни одна из этих теорий не является всеобъемлющей, поэтому возможно использование той, которая наилучшим образом описывает строение того или иного комплексного соединения.