Общее описание метода

Общее описание метода. В настоящее время самым современным и наиболее эффективным с экономической точки зрения является сбалансированный процесс окислительного хлорирования этилена.

В 2006 году более 95 % винилхлорида было произведено этим методом. В основанном на этилене процессе, винилхлорид получается пиролизом дихлорэтана, который в свою очередь синтезируется каталитической реакцией хлора с этиленом.

Хлороводород, получаемый в результате дегидрохлорирования дихлорэтана, вступает в реакцию с кислородом и этиленом в присутствии медного катализатора, образуя дихлорэтан и тем самым, уменьшая расход элементарного хлора, используемого для прямого хлорирования этилена. Этот процесс известен как оксихлорирование.

Для получения товарного продукта, винилхлорид очищают дистилляцией, а побочные хлорорганические продукты либо выделяют для получения растворителей, либо подвергают термодеструкции для вовлечения хлороводорода обратно в процесс.

Химия процесса выглядит следующим образом: • Хлорирование этилена: механизм стадии: • Термическое дегидрохлорирование дихлорэтана: механизм стадии: • Окислительное хлорирование этилена: механизм стадии: При такой схеме производства распределение этилена происходит примерно поровну между стадиями прямого и окислительного хлорирования. 6.3.2 Vinnolit VCM Process Одной из самых распространённых технологий производства винилхлорида в мире является Vinnolit VCM Process, лицензируемый немецкой компанией «Vinnolit GmbH & Co.»: начиная с 1964 года, в мире установлено приблизительно 5,5 млн тонн мощностей по выпуску винилхлорида по этому процессу.

Ниже представлено схематичное изображение процесса: Краткое описание стадий процесса: • Прямое хлорирование этилена: Реакция хлорирования этилена протекает в жидкой фазе в среде дихлорэтана при температуре 50—125 °С в присутствии специального усовершенствованного (по сравнению с FeCl3) комплексного катализатора, препятствующего образованию побочных продуктов, не расходующегося в процессе синтеза и остающемуся в реакторном объёме. Благодаря этому, образующийся дихлорэтан не требует очистки (чистота достигает 99,9 % и более) и напрямую поступает на стадию пиролиза. • Процесс оксихлорирования этилена: Процесс оксихлорирования — экзотермическая реакция, сопровождающаяся выделением большого количества тепла (ΔH = −238 кДж/моль) и проходящая в присутствии кислорода (преимущественно) или воздуха.

Реакционная газовая смесь разогревается свыше 210 °С, а выделяемое тепло реакции используется для образования пара. Степень конверсии этилена достигает 99 %, а чистота получаемого дихлорэтана 99,5 %. • Процесс дистилляции дихлорэтана: Дистилляция требуется для дихлорэтана, образующегося в процессе оксихлорирования, а также непрореагировавшего (возвратного) дихлорэтана со стадии пиролиза.

Вода и низко кипящие компоненты удаляются в осушающей колонне. Кубовый остаток в дальнейшем поступает на стадию регенерации. • Пиролиз дихлорэтана: Пиролиз дихлорэтана производится в специальных печах (операционный период: до 2 лет) при температуре 480 ° С; при этом теплота процесса используется для испарения и нагрева. • Дистилляция винилхлорида: Продукты пиролиза, состоящие, в основном, из дихлорэтана, винилхлорида и хлороводорода, направляются в узел дистилляции.

Хлороводород возвращается в отделение оксихлорирования, винилхлорид удаляется через верхнюю часть колонны, а кубовый остаток, состоящий из непрореагировавшего дихлорэтана, возвращается в процесс дистилляции после удаления побочных продуктов. • Регенерация побочных продуктов: Жидкие и газообразные побочные продукты полностью сжигаются при температуре 1100—1200 ° С, образуя хлороводород, который после очистки возвращается в процесс оксихлорирования; также попутно за счёт высокой температуры продуцируется пар среднего давления. Расчётный материально-энергетический баланс процесса (на 1000 кг винихлорида): • Этилен: 460 кг; • Хлор: 585 кг; • Кислород: 139 кг; • Пар: 125 кг; • Электроэнергия: 120 кВт*ч; • Вода: 150 м3. 6.4