рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Медь и её свойства

Работа сделанна в 2007 году

Медь и её свойства - Реферат, раздел Химия, - 2007 год - Министерство Образования И Науки Рф Реферат «Медь И Её Свойства» Выполнил: Пр...

Министерство образования и науки РФ РЕФЕРАТ «МЕДЬ И ЕЁ СВОЙСТВА» Выполнил: Проверил: 2007 год МЕДЬ (лат. Cuprum), Cu (читается «купрум»), химический элемент I группы периодической системы Менделеева, атомный номер 29, атомная масса 63,1.Общая характеристика меди. Природная медь состоит из двух стабильных нуклидов 63Cu (69,09% по массе) и 65Cu (30,91%). Конфигурация двух внешних электронных слоев нейтрального атома меди 3s2p6d104s1. Образует соединения в степенях окисления +2 (валентность II) и +1 (валентность I), очень редко проявляет степени окисления +3 и +4. В периодической системе Менделеева медь расположена в четвертом периоде и входит в группу IВ, к которой относятся такие благородные металлы, как серебро (Ag) и золото (Au). Радиус нейтрального атома меди 0,128 нм, радиус иона Cu+ от 0,060 нм (координационное число 2) до 0,091 нм (координационное число 6), иона Cu2+ — от 0,071 нм (координационное число 2) до 0,087 нм (координационное число 6). Энергии последовательной ионизации атома меди 7,726; 20,291; 36,8; 58,9 и 82,7 эВ. Сродство к электрону 1,8 эВ. Работа выхода электрона 4,36 эВ. По шкале Полинга электроотрицательность меди 1,9; медь принадлежит к числу переходных металлов.

Стандартный электродный потенциал Cu/Cu2+ 0,339 В. В ряду стандартных потенциалов медь расположена правее водорода (H) и ни из воды, ни из кислот водорода не вытесняет.

Простое вещество медь — красивый розовато-красный пластичный металл.

Название: латинское название меди происходит от названия острова Кипра (Cuprus), где в древности добывали медную руду; однозначного объяснения происхождения этого слова в русском языке нет. 2.Физические и химические свойства: Кристаллическая решетка металлической меди кубическая гранецентрированная, параметр решетки а = 0,36150 нм. Плотность 8,92 г/см3, температура плавления 1083,4°C, температура кипения 2567°C. Медь среди всех других металлов обладает одной из самых высоких теплопроводностей и одним из самых низких электрических сопротивлений (при 20°C удельное сопротивление 1,68·10–3 Ом·м). В сухой атмосфере медь практически не изменяется.

Во влажном воздухе на поверхности меди в присутствии углекислого газа образуется зеленоватая пленка состава Cu(OH)2·CuCO3. Так как в воздухе всегда имеются следы сернистого газа и сероводорода, то в составе поверхностной пленки на металлической меди обычно имеются и сернистые соединения меди. Такая пленка, возникающая с течением времени на изделиях из меди и ее сплавов, называется патиной.

Патина предохраняет металл от дальнейшего разрушения. Для создания на художественных предметах «налета старины» на них наносят слой меди, который затем специально патинируется.При нагревании на воздухе медь тускнеет и в конце концов чернеет из-за образования на поверхности оксидного слоя. Сначала образуется оксид Cu2O, затем — оксид CuO. Красновато-коричневый оксид меди (I) Cu2O при растворении в бромо- и иодоводородной кислотах образует, соответственно, бромид меди (I) CuBr и иодид меди (I) CuI. При взаимодействии Cu2O с разбавленной серной кислотой возникают медь и сульфат меди: Cu2O + H2SO4 = Cu + CuSO4 + H2O. При нагревании на воздухе или в кислороде Cu2O окисляется до CuO, при нагревании в токе водорода - восстанавливается до свободного металла. Черный оксид меди (II) CuO, как и Cu2O, c водой не реагирует.

При взаимодействии CuO с кислотами образуются соли меди (II): CuO + H2SO4 = CuSO4 + H2O При сплавлении со щелочами CuO образуются купраты, например: CuO + 2NaOH = Na2CuO2 + H2O Нагревание Cu2O в инертной атмосфере приводит к реакции диспропорционирования: Cu2O = CuO + Cu. Такие восстановители, как водород, метан, аммиак, оксид углерода (II) и другие восстанавливают CuO до свободной меди, например: CuO + СО = Cu + СО2. Кроме оксидов меди Cu2O и CuO, получен также темно-красный оксид меди (III) Cu2O3, обладающий сильными окислительными свойствами.

Медь реагирует с галогенами, например, при нагревании хлор реагирует с медью с образованием темно-коричневого дихлорида CuCl2. Существуют также дифторид меди CuF2 и дибромид меди CuBr2, но дииодида меди нет. И CuCl2, и CuBr2 хорошо растворимы в воде, при этом ионы меди гидратируются и образуют голубые растворы.

При реакции CuCl2 с порошком металлической меди образуется бесцветный нерастворимый в воде хлорид меди (I) CuCl. Эта соль легко растворяется в концентрированной соляной кислоте, причем образуются комплексные анионы [CuCl2]–, [CuCl3]2– и [СuCl4]3–, например за счет процесса: CuCl + НCl = H[CuCl2] При сплавлении меди с серой образуетcя нерастворимый в воде сульфид Cu2S. Сульфид меди (II) CuS выпадает в осадок, например, при пропускании сероводорода через раствор соли меди (II): H2S + CuSO4 = CuS + H2SO4 C водородом, азотом, графитом, кремнием медь не реагирует. При контакте с водородом медь становится хрупкой (так называемая «водородная болезнь» меди) из-за растворения водорода в этом металле.

В присутствии окислителей, прежде всего кислорода, медь может реагировать с соляной кислотой и разбавленной серной кислотой, но водород при этом не выделяется: 2Cu + 4HCl + O2 = 2CuCl2 + 2H2O. С азотной кислотой различных концентраций медь реагирует довольно активно, при этом образуется нитрат меди (II) и выделяются различные оксиды азота.

Например, с 30%-й азотной кислотой реакция меди протекает так: 3Cu + 8HNO3 = 3Cu(NO3)2 + 2NO + 4H2O. С концентрированной серной кислотой медь реагирует при сильном нагревании: Cu + 2H2SO4 = CuSO4 + SO2 + 2H2O. Практическое значение имеет способность меди реагировать с растворами солей железа (III), причем медь переходит в раствор, а железо (III) восстанавливается до железа (II): 2FeCl3 + Cu = CuCl2 + 2FeCl2 Этот процесс травления меди хлоридом железа (III) используют, в частности, при необходимости удалить в определенных местах слой напыленной на пластмассу меди. Ионы меди Cu2+ легко образуют комплексы с аммиаком, например, состава [Cu(NH3)]2+. При пропускании через аммиачные растворы солей меди ацетилена С2Н2 в осадок выпадает карбид (точнее, ацетиленид) меди CuC2. Гидроксид меди Cu(OH)2 характеризуется преобладанием основных свойств.

Он реагирует с кислотами с образованием соли и воды, например: Сu(OH)2 + 2HNO3 = Cu(NO3)2 + 2H2O. Но Сu(OH)2 реагирует и с концентрированными растворами щелочей, при этом образуются соответствующие купраты, например: Сu(OH)2 + 2NaOH = Na2[Cu(OH)4] Если в медноаммиачный раствор, полученный растворением Сu(OH)2 или основного сульфата меди в аммиаке, поместить целлюлозу, то наблюдается растворение целлюлозы и образуется раствор медноаммиачного комплекса целлюлозы.

Из этого раствора можно изготовить медноаммиачные волокна, которые находят применение при производстве бельевого трикотажа и различных тканей. 3.Нахождение в природе В земной коре содержание меди составляет около 5·10–3% по массе.

Очень редко медь встречается в самородном виде (самый крупный самородок в 420 тонн найден в Северной Америке). Из руд наиболее широко распространены сульфидные руды: халькопирит, или медный колчедан, CuFeS2 (30% меди), ковеллин CuS (64,4% меди), халькозин, или медный блеск, Cu2S (79,8% меди), борнит Cu5FeS4 (52-65% меди). Существует также много и оксидных руд меди, например: куприт Cu2O, (81,8% меди), малахит CuCO3·Cu(OH)2 (57,4% меди) и другие.

Известно 170 медьсодержащих минералов, из которых 17 используются в промышленных масштабах.

Различных руд меди много, а вот богатых месторождений на земном шаре мало, к тому же медные руды добывают уже многие сотни лет, так что некоторые месторождения полностью исчерпаны. Часто источником меди служат полиметаллические руды, в которых, кроме меди, присутствуют железо (Fe), цинк (Zn), свинец (Pb), и другие металлы.Как примеси медные руды обычно содержат рассеянные элементы (кадмий, селен, теллур, галий, германий и другие), а также серебро, а иногда и золото.

Для промышленных разработок используют руды, в которых содержание меди составляет немногим более 1 % по массе, а то и менее. В морской воде содержится примерно 1·10–8 % меди. 4.Получение Промышленное получение меди — сложный многоступенчатый процесс. Добытую руду дробят, а для отделения пустой породы используют, как правило, флотационный метод обогащения.Полученный концентрат (содержит 18-45% меди по массе) подвергают обжигу в печи с воздушным дутьем.

В результате обжига образуется огарок - твердое вещество, содержащее, кроме меди, также и примеси других металлов. Огарок плавят в отражательных печах или электропечах. После этой плавки, кроме шлака, образуется так называемый штейн, в котором содержание меди составляет до 40-50%. Далее штейн подвергают конвертированию — через расплавленный штейн продувают сжатый воздух, обогащенный кислородом.В штейн добавляют кварцевый флюс (песок SiO2). В процессе конвертирования содержащийся в штейне как нежелательная примесь сульфид железа FeS переходит в шлак и выделяется в виде сернистого газа SO2: 2FeS + 3O2 + 2SiO2 = 2FeSiO3 + 2SO2 Одновременно сульфид меди (I) Cu2S окисляется: 2Cu2S + 3О2 = 2Cu2О + 2SO2 Образовавшийся на этой стадии Cu2О далее реагирует с Cu2S: 2Cu2О + Cu2S = 6Cu + SО2 В результате возникает так называемая черновая медь, в которой содержание самой меди составляет уже 98,5-99,3% по массе.

Далее черновую медь подвергают рафинированию. Рафинирование на первой стадии — огневое, оно заключается в том, что черновую медь расплавляют и через расплав пропускают кислород.

Примеси более активных металлов, содержащихся в черновой меди, активно реагируют с кислородом и переходят в оксидные шлаки.На заключительной стадии медь подвергают электрохимическому рафинированию в сернокислом растворе, при этом черновая медь служит анодом, а очищенная медь выделяется на катоде. При такой очистке примеси менее активных металлов, присутствовавшие в черновой меди, выпадают в осадок в виде шлама, а примеси более активных металлов остаются в электролите.

Чистота рафинированной (катодной) меди достигает 99,9% и более. 5.Применение Медь, как полагают, — первый металл, который человек научился обрабатывать и использовать для своих нужд. Найденные в верховьях реки Тигр изделия из меди датируются десятым тысячелетием до нашей эры. Позднее широкое применение сплавов меди определило материальную культуру бронзового века (конец 4 — начало 1 тысячелетия до нашей эры) и в дальнейшем сопровождало развитие цивилизации на всех этапах.

Медь и ее использовались для изготовления посуды, утвари, украшений, различных художественных изделий. Особенно велика была роль бронзы. С 20 века главное применение меди обусловлено ее высокой электропроводимостью.Более половины добываемой меди используется в электротехнике для изготовления различных проводов, кабелей, токопроводящих частей электротехнической аппаратуры.

Из-за высокой теплопроводности медь — незаменимый материал различных теплообменников и холодильной аппаратуры.Широко применяется медь в гальванотехнике — для нанесения медных покрытий, для получения тонкостенных изделий сложной формы, для изготовления клише в полиграфии и др. Большое значение имеют медные сплавы — латуни (основная добавка цинк (Zn)), бронзы (сплавы с разными элементами, главным образом металлами — оловом (Sn), алюминием (Al), бериллием (Be), свинцом (Pb), кадмием (Cd) и другими, кроме цинка (Zn) и никеля (Ni)) и медно-никелевые сплавы, в том числе мельхиор и нейзильбер.

В зависимости от марки (состава) сплавы используются в самых различных областях техники как конструкционные, антидикционные, стойкие к коррозии материалы, а также как материалы с заданной электро- и теплопроводностью Так называемые монетные сплавы (медь с "алюминием (Al) и медь с никелем (Ni)) применяют для чеканки монет — «меди» и «серебра»; но медь входит в состав и настоящих монетного серебра и монетного золота. 6.Биологическая роль Медь присутствует во всех организмах и принадлежит к числу микроэлементов, необходимых для их нормального развития (см. Биогенные элементы). В растениях и животных содержание меди варьируется от 10–15 до 10–3%. Мышечная ткань человека содержит 1·10–3% меди, костная ткань — (1-26)·10–4 %, в крови присутствует 1,01 мг/л меди. Всего в организме среднего человека (масса тела 70 кг) содержится 72 мг меди. Основная роль меди в тканях растений и животных - участие в ферментативном катализе.

Медь служит активатором ряда реакций и входит в состав медьсодержащих ферментов, прежде всего оксидаз, катализирующих реакции биологического окисления.

Медьсодержащий белок пластоцианин участвует в процессе фотосинтеза. Другой медьсодержащий белок, гемоцианин, выполняет роль гемоглобина у некоторых беспозвоночных. Так как медь токсична, в животном организме она находится в связанном состоянии.Значительная ее часть входит в состав образующегося в печени белка церулоплазмина, циркулирующего с током крови и деставляющего медь к местам синтеза других медьсодержащих белков.

Церулопламин обладает также каталитической активностью и участвует в реакциях окисления. Медь необходима для осуществления различных функций организма — дыхания, кроветворения (стимулирует усвоение железа и синтез гемоглобина), обмена углеводов и минеральных веществ.Недостаток меди вызывает болезни как растений, так и животных и человека.

С пищей человек ежедневно получает 0,5-6 мг меди. Сульфат меди и другие соединения меди используют в сельском хозяйстве в качестве микроудобрений и для борьбы с различными вредителями растений. Однако при использовании соединений меди, при работах с ними нужно учитывать, что они ядовиты. Попадание солей меди в организм приводит к различным заболеваниям человека.ПДК для аэрозолей меди составляет 1 мг/м3, для питьевой воды содержание меди должно быть не выше 1,0 мг/л.

– Конец работы –

Используемые теги: Медь, Свойства0.052

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Медь и её свойства

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Тип ячейки определяет строение и свойства кристалла в целом, а свойства каждого из этих кристаллов определяет свойства всего кристалла в целом
Кристаллическое строение металлов... Металлы Ме являются поликристаллическими веществами т е они состоят из... Кристаллическое состояние твердое состояние вещества...

ДИСПЕРСНЫЕ СИСТЕМЫ: ОСНОВНЫЕ СВОЙСТВА И КЛАССИФИКАЦИЯ. Поверхностные явления. Адсорбция. Электрические свойства дисперсных систем. Электрокинетические явления. Устойчивость и нарушение устойчивости лиофобных золей
ФГБОу впо ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНЖЕНЕРНЫХ ТЕХНОЛОГИЙ... Кафедра физической и аналитической химии...

Понятие информ., свойства информ., экономическая информ., свойства экономической информ., классификация экономической информ
Информ универсальный ресурс потребляемый всеми сферами экономики и представляющий собой совокупность сведений фактов знаний об окружающих ее... Информ должна рассматриваться в х аспектах... синтетический связан только со способом передачи информ...

Свойства портландцемента. Основные свойства строительных материалов
Производство портландцемента состоит из следующих основных технологических процессов: добычи известняка, глины или мергеля; измельчения сырьевых… Обжиг до спекания подготовленного сырья сопровождается сложными физическими… После обжига полученный клинкер направляют в специальные холодильники для быстрого охлаждения материала.С увеличением…

От физических и механических свойств зависят технологические и эксплуатационные свойства материалов
Материаловедение относится к числу основополагающих дисциплин для машиностроительных специальностей Это связано с тем что получение разработка... Материаловедение является основой для изучения многих специальных дисциплин... От физических и механических свойств зависят технологические и эксплуатационные свойства материалов...

Важнейшие соединения бора, алюминия иах физико-химические свойства. КО и ОВ свойства. Борная кислота. Кристаллогидрат тетраборатанатрия /бура
Содержание темы и учебно целевые вопросы... Общая характеристика р элементов Неметаллы амфотерные элементы Изменение... Элементы III А группы и IV А группы Общая характеристика групп...

Лекции по курсу: Биохимия Тема: ПЕПТИДЫ, БЕЛКИ: ИХ СТРОЕНИЕ, СВОЙСТВА, ЗНАЧЕНИЕ В ОРГАНИЗМЕ, МЕТОДЫ ИССЛЕДОВАНИЯ.ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА БЕЛКОВ. 10
Федеральное агентство по образованию... Государственное образовательное учреждение высшего профессионального...

СВОЙСТВА ХИМИЧЕСКОЙ СВЯЗИ
На сайте allrefs.net читайте: "СВОЙСТВА ХИМИЧЕСКОЙ СВЯЗИ"...

Общие свойства статически неопределимых систем. Степень статической неопределимости. Основная система метода сил.
На сайте allrefs.net читайте: Общие свойства статически неопределимых систем. Степень статической неопределимости. Основная система метода сил....

ФИЗИЧЕСКОЕ ПРОСТРАНСТВО И ЕГО СВОЙСТВА
На сайте allrefs.net читайте: "ФИЗИЧЕСКОЕ ПРОСТРАНСТВО И ЕГО СВОЙСТВА"

0.039
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам