Квантовая химия

Для того, чтобы объяснить устойчивость атома, Нильс Бор соединил в своей модели классические и квантовые представления о движении электрона. Однако искусственность такого соединения была очевидна с самого начала. Развитие квантовой теории привело к изменению классических представлений о структуре материи, движении, причинности, пространстве, времени и т.д., что способствовало коренному преобразованию картины мира. В конце 20-х – начале 30-х годов XX века на основе квантовой теории сформировались принципиально новые теории строения атома и образования химической связи.

После создания Альбертом Эйнштейном фотонной теории света (1905) и выведения им статистических законов электронных переходов в атоме (1917) в физике обострилась проблема "волна – частица". Если в XVIII-XIX веках имелись расхождения между различными учеными, которые для объяснения одних и тех же явлений в оптике привлекали либо волновую, либо корпускулярную теорию, то теперь противоречие приобрело принципиальный характер: одни явления (дифракция) интерпретировались с волновых позиций, а другие (фотоэффект) – с корпускулярных. Разрешение этого противоречия предложил в 1924 г. французский физик Луи Виктор Пьер Раймон де Бройль, приписавший волновые свойства частице. Распространив идею о двойственной природе света на вещество, де Бройль предположил наличие у материальных частиц волновых свойств, однозначно связанных с массой и энергией. Он показал, что движению электрона может соответствовать некоторая волна материи, так же как движению светового кванта соответствует световая волна. Де Бройль предложил объяснить квантовые условия теории Бора с помощью представления о волнах материи. Волна, движущаяся вокруг ядра атома, по геометрическим соображениям может быть только стационарной волной; длина орбиты должна быть кратной целому числу длин волн. Гипотеза де Бройля о наличии у электронов волновых свойств была подтверждена обнаруженным в 1927 г. явлением дифракции электронов: оказалось, что пучок электронов дает дифракционную картину (позже будет обнаружена дифракция атомов и молекул).

Исходя из идеи де Бройля о волнах материи, немецкий физик Эрвин Шрёдингер в 1926 г. вывел основное уравнение т.н. волновой механики, содержащее волновую функцию и позволяющее определить возможные состояния квантовой системы и их изменение во времени. Шредингер дал общее правило преобразования классических уравнений в волновые. В рамках волновой механики атом можно было представить в виде ядра, окруженного стационарной волной материи. Волновая функция определяла плотность вероятности нахождения электрона в данной точке.

В том же 1926 г. другой немецкий физик Вернер Гейзенберг разработал свой вариант квантовой теории атома в виде матричной механики, отталкиваясь при этом от сформулированного Бором принципа соответствия. Согласно принципу соответствия, законы квантовой физики должны переходить в классические законы, когда квантовая дискретность стремится к нулю при увеличении квантового числа). В более общем виде принцип соответствия можно сформулировать следующим образом: новая теория, которая претендует на более широкую область применимости по сравнению со старой, должна включать в себя последнюю как частный случай. Квантовая механика Гейзенберга позволяла объяснить существование стационарных квантованных энергетических состояний и рассчитать энергетические уровни различных систем.

Результаты, к которым приводили методы, используемые в волновой механике Шрёдингера и матричной механике Гейзенберга, оказались одинаковыми, поэтому обе концепции и входят в единую квантовую теорию как эквивалентные.

Однако изначально волновая и матричная механики имели принципиальные различия в подходах. У Шрёдингера частица выступала как чисто волновое образование, т.е. частица есть место волны, в котором сосредоточена наибольшая энергия волны. Интерпретация Шрёдингера представляла собой, по сути, попытку создать более или менее наглядные модели в духе классической физики. Гейзенберг же сформулировал принцип неопределенности, в соответствии с которым точность определения координаты частицы обратно пропорциональна точности определения её скорости. Принцип неопределенности указывает на то, что частицы могут вести себя как волны – они как бы "размазаны" в пространстве, поэтому можно говорить не об их точных координатах, а лишь о вероятности их обнаружения в определенном пространстве. Таким образом, квантовая механика фиксирует корпускулярно-волновой дуализм – в одних случаях удобнее частицы считать волнами, в других, наоборот, волны частицами.

С принципом неопределённости поначалу соглашались далеко не все физики; его всеобщему признанию предшествовала довольно длительная дискуссия. Осуществлённая Гейзенбергом и развитая Бором интерпретация квантовой теории получила название копенгагенской. В рамках данной интерпретации основным положением квантовой теории выступает принцип дополнительности, означающий требование применять для получения целостной картины изучаемого объекта взаимоисключающие классы понятий, приборов и исследовательских процедур, которые используются в своих специфических условиях и взаимно дополняют друг друга. Принцип дополнительности, таким образом, позволил дополнить классические теории квантовыми, а не противопоставить их друг другу.

Вскоре после того, как Гейзенберг и Шрёдингер разработали квантовую механику, Поль Адриен Морис Дирак предложил более общую теорию, в которой элементы специальной теории относительности Эйнштейна сочетались с волновым уравнением. Уравнение Дирака применимо к частицам, движущимся с произвольными скоростями. Спин и магнитные свойства электрона следовали из теории Дирака без каких бы то ни было дополнительных предположений. Кроме того, теория Дирака предсказывала существование античастиц, таких, как позитрон и антипротон, – двойников частиц с противоположными по знак электрическими зарядами.

Квантово-механический подход к строению атома привёл к созданию принципиально новых представлений о природе химической связи. Уже в 1927 г. Вальтер Гейтлер и Фриц Лондон начали разрабатывать квантовомеханическую теорию химической связи и выполнили приближённый расчёт молекулы водорода. Распространение метода Гейтлера-Лондона на многоатомные молекулы привело к созданию метода валентных связей, который разработали в 1928-1931 гг. Лайнус Карл Полинг и Джон Кларк Слэтер. Основная идея этого метода заключается в предположении, что атомные орбитали сохраняют при образовании молекулы известную индивидуальность. В 1928 г. Полинг предложил теорию резонанса и идею гибридизации атомных орбиталей, в 1932 г. – новое количественное понятие электроотрицательности и шкалу электроотрицательностей, выразил зависимость между электротрицательностью и энергией химической связи.

Фридрих Хунд, Роберт Сандерсон Малликен и Джон Эдвард Леннард-Джонс в 1929 г. начали разработку метода молекулярных орбиталей. В основу ММО заложено представление о полной потере индивидуальности атомов, соединившихся в молекулу. Молекула, таким образом, состоит не из атомов, а представляет собой новую систему, образованную несколькими атомными ядрами и движущимися в их поле электронами. Фридрих Хунд предложил также современную классификацию химических связей; в 1931 г. он пришёл к выводу о существовании двух основных типов химических связей – простой, или σ-связи, и π-связи. В том же году немецкий физик Эрих Хюккель распространил метод МО на органические соединения, сформулировав в правило ароматической стабильности (4n+2), устанавливающее принадлежность вещества к ароматическому ряду.

Таким образом, в квантовой химии сразу выделились два различных подхода к пониманию химической связи: метод молекулярных орбиталей и метод валентных связей. Сравнивая эти два метода, нетрудно заметить известные аналогии с теориями структурной химии XIX века – различия этих методов напоминают различия между новой теорией типов и теорией валентности. ММО, как некогда новая теория типов, рассматривает молекулу как принципиально новое, единое образование; МВС, подобно теории валентности, в значительной степени представляет собой аддитивный подход. Поскольку квантово-механическая модель атома оказалась куда менее наглядной, чем классическая, метод ВС как представление, которое, сохранив наглядность, не слишком противоречило истине, получил (особенно поначалу) более широкое распространение. Однако, несмотря на различия в подходах, оба метода приводят к практически одинаковым результатам.

Благодаря квантовой механике к 30-м годам XX века в основном был выяснен способ образования связи между атомами (что, кстати говоря, являлось труднейшим вопросом атомизма, начиная от Левкиппа и Демокрита). Кроме того, в рамках квантово-механического подхода получило корректную физическую интерпретацию менделеевское учение о периодичности.