Цикл Карно

Сущность ограничений, налагаемых вторым законом на превращение теплоты в работу, можно пояснить на примере действия идеальной машины (машина работает без трения и без потерь тепла, а под рабочим телом подразумевается идеальный газ), работающей по принципу обратимого цикла С. Карно (1824 г).

Рассматриваемый цикл состоит из четырех процессов:

1) изотермического расширения;

2) адиабатического расширения;

3) изотермического сжатия;

4) адиабатического сжатия газа.

Все процессы проводятся обратимо, в результате чего газ возвращается в исходное состояние. Пусть количество газа равно 1-ому молю. Начальное состояние характеризуется температурой Т1, давлением p1, объемом V1 (точка А на рис.).

В первом процессе газ изотермически и обратимо расширяется от объема V1 до объема V2. Допустим, что теплоотдатчик так велик, что его температура заметно не изменяется. В таком процессе газ производит работу расширения А1 цели­ком за счет поглощения теплоты Q1.

Тогда .

Прекратив в точке В подачу тепла, дадим газу адиабатически расшириться. Работа А2, совершаемая при таком расширении, происходит целиком за счет уменьшения внутренней энергии газа, т. е. понижения его температуры. Последняя падает от Т1 до Т2. Объем газа в точке С будет . Изменение внутренней энергии в этих условиях

.

Работа в этом процессе в точности равна убыли внутреннейэнер­гии , откуда

.

От точки С до точки D проводим изотермическое сжатие (теплота отводится в холодильник). При изотермическом сжатии внутренняя энергия газа не изменяется, ибо температура Т2 постоянна. Вся работа А3, затрачиваемая на сжатие, переходит в теплоту Q2, которая и отводится в холодильник. Таким образом,

.

Последний процесс - адиабатическое сжатие газа - проведем следующим образом: отсоединим газ от теплоприемника и сожмем его до объема , т. е. вернем

газ в исходное состояние. В этом процессе внутренняя энергия газа возрастет на величину, равную затрачен­ной работе сжатия А4:

; ,

т.е. .

Так как процесс в целом является круговым, то внутренняя энер­гия газа в конечном состоянии равна таковой в начальном состоянии, и общее количество теплоты, полученное газом, равно общему количеству произведенной им работы

.

А2 и А4 равны по абсолютному значению, но противоположны по знаку. Учитывая это, получим: . Подставив вместо А1 и А3 соответствующие им значения, получим:

или

.

Используя уравнение адиабаты = соnst, где , можно доказать, что

,

тогда .

Разделив левую и правую части этого равенства на уравнение (2.1), будем иметь:

; ,

где η – коэффициент полезного действия (К.П.Д.) тепловой машины.

Отсюда видно, что коэффициент полезного действия цикла зависит только от разности температур нагревателя и холодильника. Так как Т2<Т1, то <1. Следовательно, даже в идеальном случае существует предел превращения теплоты в работу.

Можно доказать, что тепловая машина, работающая по любому реальному циклу, будет иметь коэффициент полезного действия меньше, чем работающая по циклу Карно.