Принцип Ле Шателье

Так как почти все реакции в той или иной степени обратимы, в промышленности и лабораторной практике возникают две проблемы: как получить продукт " полезной" реакции с максимальным выходом и как уменьшить выход продуктов " вредной" реакции. И в том, и в другом случае возникает необходимость сместить равновесие либо в сторону продуктов реакции, либо в сторону исходных веществ. Чтобы научиться это делать, надо знать, от чего зависит положение равновесия любой обратимой реакции.

Положение равновесия зависит:

1) от значения константы равновесия (то есть от природы реагирующих веществ и температуры),

2) от концентрации веществ, участвующих в реакции и

3) от давления (для газовых систем оно пропорционально концентрациям веществ).

Для качественной оценки влияния на химическое равновесие всех этих очень разных факторов используют универсальный по своей сути принцип Ле Шателье (французский физикохимик и металловед Анри Луи Ле Шателье сформулировал его в 1884 году), который применим к любым равновесным системам, не только химическим.

Если на систему, находящуюся в равновесии, воздействовать извне, то равновесие в системе сместится в направлении, в котором происходит частичная компенсация этого воздействия.

В качестве примера влияния на положение равновесия концентраций веществ-участников реакции рассмотрим уже известную вам обратимую реакцию получения йодоводорода

H2(г) + I2(г) 2HI(г).

По закону действующих масс в состоянии равновесия

Kc =

Пусть в реакторе объемом 1 литр при некоторой постоянной температуре установилось равновесие, при котором концентрации всех участников реакции одинаковы и равны 1 моль/л ([H2] = 1 моль/л; [I2] = 1 моль/л; [HI] = 1 моль/л). Следовательно, при этой температуре КС = 1. Так как объем реактора 1 литр, n(H2) = 1 моль, n(I2) = 1 моль и n(HI) = 1 моль. В момент времени t 1 введем в реактор еще 1 моль HI, его концентрация станет равной 2 моль/л. Но, чтобы КС оставалась постоянной, должны увеличиться концентрации водорода и йода, а это возможно только за счет разложения части йодоводорода по уравнению

2HI(г) = H2(г) + I2(г).

Пусть к моменту достижения нового состояния равновесия t 2 разложилось x моль HI и, следовательно, образовалось дополнительно по 0,5x моль H2 и I2. Новые равновесные концентрации участников реакции: [H2] = (1 + 0,5x) моль/л; [I2] = (1 + 0,5x) моль/л; [HI] = (2 - x) моль/л. Подставив числовые значения величин в выражение закона действующих масс, получим уравнение

1= Откуда x = 0,667. Следовательно, [H2] = 1,333 моль/л; [I2] = 1,333 моль/л; [HI] = 1,333 моль/л.

В результате введения в реактор дополнительной порции HI равновесие в системе нарушилось и сместилось в сторону образования исходных веществ (H2 и I2). В данном случае - это обратная реакция. Следовательно, равновесие сместилось в сторону обратной реакции (" влево" ).

Если в тот же реактор при тех же условиях ввести 1 моль водорода, то равновесие сместится в направлении, в котором водород вступит в реакцию, и его концентрация за счет этого понизится, а концентрация HI повысится. Это происходит в прямой реакции, и , следовательно, теперь равновесие смещается в сторону прямой реакции (" вправо" ). Легко посчитать новые равновесные концентрации в этом случае: [H2] = 1,865 моль/л; [I2] = 0,865 моль/л; [HI] = 1,270 моль/л (см. рис. 9.3 б).

Таким образом, введение в систему одного из веществ-участников реакции приводит к смещению равновесия в направлении, в котором это вещество расходуется.

В качестве примера влияния на положение равновесия температуры рассмотрим обратимую реакцию синтеза аммиака N2(г) + 3H2(г) 2NH3(г).

Прямая реакция здесь экзотермическая: N2(г) + 3H2(г) = 2NH3(г) + Q,

и, следовательно, обратная реакция - эндотермическая: 2NH3(г) = N2(г) + 3H2(г) - Q.

В прямой реакции выделяется теплота. Если нам нужно сместить равновесие вправо, то есть в сторону прямой реакции, то выделение теплоты должно стать " ответом" системы на внешнее воздействие, а именно - на отвод теплоты. А отводя теплоту, мы понижаем температуру в реакторе.

Наоборот, если мы нагреем реакционную смесь, то есть подведем теплоту, " ответом" системы будет поглощение теплоты, которое может произойти только при смещении равновесия " влево" .

Таким образом, при нагревании равновесие смещается в сторону эндотермической реакции, а при охлаждении - наоборот.

Конечно, и в этой системе равновесие можно сместить, меняя концентрации веществ-участников реакции. Но посмотрим, как сместится равновесие в этой системе, если увеличить давление. По принципу Ле Шателье равновесие должно сместиться в сторону, компенсирующую внешнее воздействие, то есть в направлении той реакции, в которой при постоянном объеме общее давление уменьшается. Это возможно только при уменьшении общего числа молекул в системе. Общее число молекул уменьшается в ходе прямой реакции, следовательно, равновесие сместится в сторону образования аммиака. И наоборот, при понижении давления равновесие сместится в сторону образования азота и водорода.

 

13 Химическая кинетика, кинетика химических реакций, учение о химических процессах - о законах их протекания во времени, скоростях и механизмах. С исследованиями кинетики химических реакций связаны важнейшие направления современной химии и химической промышленности: разработка рациональных принципов управления химическими процессами; стимулирование полезных и торможение и подавление нежелательных химических реакций; создание новых и усовершенствование существующих процессов и аппаратов в химической технологии; изучение поведения химических продуктов, материалов и изделий из них в различных условиях применения и эксплуатации.

В реальных условиях, например в крупных промышленных аппаратах, химический процесс осложняется в связи с передачей тепла, выделяемого или поглощаемого в реакции, транспортом веществ в зону реакции, их искусственным или естественным перемешиванием. Эти проблемы решает так называемая макрокинетика.

Вместе с тем многие уравнения, описывающие протекание во времени химических реакций, пригодны и для описания ряда физических процессов (распад радиоактивных ядер, деление ядерного горючего), а также для количественной характеристики развития некоторых биохимических, в том числе ферментативных, и других биологических процессов (нормальный и злокачественный рост тканей, развитие лучевого поражения, кинетические критерии оценки эффективности лечения). К. х. лежит в основе исследования сложных процессов горения газов и взрывчатых веществ, помогает изучению процессов в двигателе внутреннего сгорания. Таким образом, можно говорить об общей кинетике, частным случаем которой является кинетика химических реакций. Эти аналогии весьма удобны для практического использования, но всегда следует иметь в виду принципиальные различия в природе рассматриваемых явлений.

Основные понятия и законы. Химическая реакция может протекать гомогенно, то есть в объеме одной фазы, и гетерогенно, то есть на границе раздела фаз. Наиболее полно разработана К. х. реакций в газовой фазе, так как она отправляется от хорошо развитой кинетической теории газового состояния. В то же время интенсивно развивается кинетика реакций в жидкой фазе и твердых телах. В зависимости от того, в какой форме подводится к реагирующей системе необходимая для реакций энергия (теплота, свет, электрический ток, излучение, плазма, лазерные пучки, высокие и сверхвысокие давления, ударные волны), они подразделяются на тепловые, фотохимические, электрохимические, радиационно-химические и др.

В основе К. х. как учения о скоростях химических превращений лежит действующих масс закон, согласно которому скорость реакции веществ А, В, С,... пропорциональна произведению их концентраций. Скорость реакции характеризуется обычно изменением за единицу времени концентрации какого-либо из исходных веществ или конечных продуктов реакции. Например, скорость вступления в реакцию вещества А (уменьшение его концентрации в единицу времени) выражается уравнением:

- ?= k [A]a[B]b[C]g...,

где к - константа скорости реакции, [А], [В], [С]... - концентрации реагирующих веществ (в качестве действующих веществ могут выступать молекулы, радикалы и ионы, в зависимости от типа реакции); знак минус показывает, что концентрация вещества А убывает со временем. Сумма величин a, b, g... называется порядком реакции. В зависимости от числа молекул, участвующих в элементарном акте химического взаимодействия, различают реакции мономолекулярные, в которых реагируют отдельные молекулы одного вида, бимолекулярные - протекающие при двойном соударении (при встрече двух молекул), тримолекулярные - при тройном соударении. Реакции, требующие в элементарном акте встречи более трех молекул, мало вероятны. Порядок простой гомогенной реакции совпадает с числом молекул, участвующих в элементарном акте реакции. Однако чаще всего такого совпадения не бывает. В частности, показатели a, b, g... могут быть дробными величинами. Это говорит о том, что реакция имеет сложный механизм, то есть протекает в несколько элементарных стадий, каждая из которых является строго моно-, би- или тримолекулярной реакцией. В тех случаях, когда сложная по существу реакция описывается простым кинетическим уравнением, говорят, что она имитирует простой закон протекания (см. Сложные реакции).

Температурная зависимость скорости реакции определяется уравнением Аррениуса: k-=k0e-E/RT,

где k0 - множитель, который в ряде простейших случаев может быть предвычислен, исходя из молекулярно-кинетических представлений о механизме элементарного акта, е - основание натуральных логарифмов, Е - энергия активации реакции, R - универсальная газовая постоянная, Т - абсолютная температура.

На графически показано убывание со временем концентрации исходных веществ в случае реакций, удовлетворяющих простым законам. Кривые, показывающие изменение концентраций реагирующих веществ со временем, называются кинетическими кривыми.

По механизму химические процессы делятся на 3 основных типа: простые реакции между молекулами; радикальные, в том числе цепные реакции (протекающие через промежуточное образование свободных радикалов и атомов); ионные (идущие при участии ионов).

Кинетика реакций между молекулами. Реакции непосредственно между валентно-насыщенными молекулами весьма редки, т.к. происходящая при этом перестройка молекул требует разрыва химических связей, энергия которых достигает значительных величин (50-100 ккал/моль, или 209,3-418,7 кдж/моль). Поэтому в газовой фазе реакции идут чаще всего как цепные, а в жидкой фазе - и как цепные, и как ионные. Примерами реакций насыщенных молекул в газовой фазе могут служить: 1) мономолекулярная реакция распада азометана: CH3N2CH3 ?C2H6+N2; 2) бимолекулярная реакция превращения йодистого нитрозила: NOI+NOI?2NO+I2 и 3) тримолекулярная реакция окисления окиси азота в двуокись азота: 2NO+O2?2NO2.

Реакции, в которых превращение исходных веществ идёт по двум или нескольким направлениям, называются параллельными; механизм и кинетические закономерности реакций в разных направлениях могут быть самыми разнообразными - простыми и сложными (см. Параллельные реакции). Реакции, в которых превращение исходных веществ в конечные продукты происходит через несколько следующих друг за другом стадий с образованием промежуточных продуктов, называются последовательными (см. Последовательные реакции).

На показаны кинетические кривые для исходного, промежуточного и конечного веществ в последовательной реакции. Характерной особенностью этих кривых является наличие максимума у кривой промежуточного продукта и точки перегиба на кривой образования конечного продукта реакции. Однако эти особенности не могут служить однозначным признаком последовательной реакции. Известно много случаев, когда конечные продукты превращения ускоряют реакцию. Скорость таких автокаталитических процессов сначала возрастает вследствие увеличения количества продукта, являющегося катализатором, а затем уменьшается вследствие израсходования исходных веществ (см. Автокатализ). Реакция, идущая под влиянием другой, протекающей одновременно и в том же участке пространства, называется индуцированной, или сопряжённой (см. Сопряжённые реакции).

Кинетика цепных реакций. Реакции, в которых один первичный акт активации приводит к превращению большого числа молекул исходных веществ, называются цепными. В реакции зарождения цепи образуется активная частица - свободный радикал или атом. Эта активная частица реагирует с молекулой исходного вещества, образуя молекулу продукта реакции и (вследствие неуничтожимости свободной валентности) регенерируя новую активную частицу; образовавшийся радикал в свою очередь реагирует с исходной молекулой и т.д. (неразветвлённая цепь). Энергия активации взаимодействия радикалов и атомов с молекулами не превышает 10 ккал/моль (41,86 кдж/моль), поэтому длина цепи из элементарных химических реакций достигает тысяч и сотен тысяч звеньев. В некоторых цепных реакциях увеличивается число свободных валентностей, что приводит к появлению новых активных центров, то есть новых цепей. Таким образом, цепь разветвляется и реакция ускоряется (становится нестационарной).

Цепь обрывается в результате соединения (рекомбинации) двух радикалов, в случае реакции радикала с некоторыми примесными частицами, соударения со стенкой сосуда. Скорость неразветвленной цепной реакции вначале растет, затем достигает постоянного значения и, наконец, медленно убывает. Скорость разветвленной цепной реакции возрастает со временем и при благоприятных условиях может произойти воспламенение реагирующей смеси. Достигнув максимального значения, скорость реакции уменьшается из-за расходования исходных веществ (подробнее см. Цепные реакции). В соответствии с этим кинетические кривые цепных разветвленных процессов имеют характерную S-oбразную форму (). Точка перегиба на кривой отвечает максимуму скорости реакции.

Основы теории цепных реакций разработаны и экспериментально подтверждены в исследованиях советского ученого Н. Н. Семенова и его школы. В СССР успешно изучаются скорость и механизм важнейших групп цепных процессов: полимеризации, крекинга, окисления. На базе цепной теории окислительных реакций разработаны новые высокоэффективные технологические процессы получения важных химических продуктов (в частности, мономеров для получения полимеров) путем окисления нефтяного сырья и углеводородных газов.? Цепная теория процессов ингибированного окисления позволяет предотвращать окислительную порчу (старение) полимеров, смазочных масел и бензинов, пищевых продуктов и лекарственных препаратов. Ингибиторы окисления, или стабилизаторы окислительных процессов (см. Ингибиторы химические), - это важнейшие представители малотоннажных продуктов органического синтеза.

Кинетика ионных реакций. Значительное число реакций в растворах протекает при участии ионов. Скорость ионных реакций сильно зависит от растворителей, так как в разных растворителях молекулы в разной степени диссоциированы на ионы. Энергия активации реакции ионов с молекулами невелика: заряд иона снижает энергию активации. При изучении кинетики реакций в растворах учитывают влияние полярных групп, наличие большого межмолекулярного взаимодействия, влияние растворителя и т.п.

Кинетика гетерогенных каталитических реакций. Для реакций газов и жидкостей, протекающих у поверхности твёрдых тел (см. Катализ), по-видимому, имеют место те же 3 основных типа химических превращений, которые были рассмотрены для гомогенных процессов, т. е. простые, радикально-цепные и ионные реакции. Различие заключается лишь в том, что в соответствующие кинетические уравнения входят концентрации реагирующих веществ в поверхностном адсорбционном слое (см. Адсорбция). Наблюдаются разные кинетические зависимости, которые обусловлены характером адсорбции исходных веществ и продуктов реакции на поверхности. Основной суммарный кинетический эффект катализатора заключается в снижении энергии активации реакции. Важной проблемой в области гетерогенного катализа является предвидение каталитического действия. Представления и методы, свойственные теории гетерогенного катализа, все больше сближаются с областью гомогенного катализа жидкофазных реакций, особенно при использовании в качестве катализаторов комплексных соединений переходных металлов. Выясняется механизм действия биологических катализаторов (ферментов), особенно с целью создания принципиально новых высокоэффективных катализаторов для химических реакций.

Советскими и зарубежными учёными успешно разрабатываются и многие другие актуальные проблемы К. х., например, применение квантовой механики к анализу элементарного акта реакции; установление связей между строением веществ и кинетическими параметрами, характеризующими их реакционную способность; изучение кинетики и механизма конкретных сложных химических реакций с применением новейших физических экспериментальных методов и современной вычислительной техники; использование кинетических констант в инженерных расчётах в химической и нефтехимической промышленности.