Оксидометрия, иодометрия, перманганатометрия. Применение в медицине.

В зависимости от применяемых титрантов различают несколько видов окислительно-восстановительного титрования: перманганатометрическое, иодиметрическое, бихроматометрическое и другие. Перманганатометрическое титрование основано на взаимодействии стандартного раствора перманганата калия с раствором восстановителя. Окисление перманганатом калия можно проводить в кислой, щелоч­ной и нейтральная среде, причем продукты восстановления КМпО.в разных средах различны. Перманганатометрическое титрование рекомендуется проводить в ки­слой среде. Во-первых, в результате реакции образуются бесцветные ионы Мп2+ и одна избыточная капля титранта КМпО4 окрасит титруемый раствор в ро­зовый цвет. При окислении в нейтральной или щелочной среде выпадает темно-бурый осадок, или образуются ионы МпО2-4 темно-зеленого цвета, затрудняющие фиксирование точки эквивалентности. Во-вторых, окислительная способность перманганата калия в кислой среде на много больше (Е° MnO4 / Мп2+ = + 1,507в), чем в щелочной и ней­тральной среде. Стандартный окислительный потенциал пары Е} /2Г - составляет 0,54 В. Поэтому вещества, окислительный потенциал которых ниже этой величины, будут являться восстановителями. И, следовательно, будут направлять реак­цию слева направо, "поглощая" иод. К таким веществам относятся, например, На28зОз, хлорид олова (II) и др. Вещества, окислительный потенциал кото­рых выше 0,54 В, будут окислителями по отношению к иону будут направ­лять реакцию в сторону выделения свободного иода: 2I+2ё=I2. Количество выделяющегося свободного йода определяют титрованием его растворов тиосульфата Na2S2O3: I+2ё-> 2I- Тиосульфит натрия поглощает свободный йод, сдвигая равновесие ре­акции вправо. Для протекания реакции слева направо нужен избыток свобод­ного йода. Обычно проводят обратное титрование. К восстановителю, кото­рый определяют, прибавляют сразу избыток титрованного раствора йода. Часть его вступает в реакцию с восстановителем, а остаток определяют тит­рованием раствором тиосульфата натрия.

 

67. Квантово – механическая модель атома.

Квантовая (или волновая) механика основывается на том, что любые материальные частицы одновременно обладают и волновыми свойствами. Впервые это было предсказано Л. де Бройлем, кото­рый в 1924 г. теоретически показал, что частица с массой т и ско­ростью v может быть ассоциирована с волновым движением, длина волны которого X определяется выражением: Л = h / m v, где h (постоянная Планка) = 6.6256-10-27 эрг-с = 6.6256-1034 Дж-с. Вскоре это предположение было подтверждено явлениями дифрак­ции электронов и интерференции двух пучков электронов. Двойственная природа элементарных частиц (корпускулярно-волновой дуализм) - частное проявление общего свойства материи, однако ожидать его следует только для микрообъектов. Волновые свойства микрочастиц выражаются в ограниченной применимости к ним таких понятий, которыми характеризуется мак­рочастица в классической механике, как координата (х, у, г) и им­пульс (р = т • v).Для микрочастиц всегда имеются неопреде­ленности в координате и импульсе, связанные соотношением Гейзенберга: д х д px > = h, где д х - неопределенность координаты, а д рх - неопределенность импульса. Согласно принципу неопределенности, движение микрочастицы невозможно описать определенной траекторией и нельзя представить движение электрона в атоме в виде движения по конкретной круговой или эллиптической орбите, как это было принято в модели Бора. Описание движения электрона может быть дано при помощи волн де Бройля. Волна, отвечающая микрочастице, описывается волновой функцией у (х, у, г). Физический смысл имеет не сама ; волновая функция, а только произведение квадрата ее модуля на элементарный объем |у|2-dу, равное вероятности нахождения элек­трона в элементарном объеме dv = dx -dу- dz. Волновое уравнение Шредингера - это математическая модель атома. Она отражает единство корпускулярных и волновых свойств электрона. Не вдаваясь в анализ уравнения Шредингера.