рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Законы сохранения

Законы сохранения - раздел Химия, Теория атома водорода по Бору Роль Законов Сохранения.Законы Сохранения Играют Особо Важну...

Роль законов сохранения.Законы сохранения играют особо важную роль в физике элементарных частиц. Это обусловлено двумя обстоятельствами.

1. Они не только ограничивают последствия различных взаимодействий, но и определяют также все возможности этих последствий, и поэтому отличаются высокой степенью предсказательности.

2. В этой области открытие законов сохранения опережает создание последовательной теории. Многие законы сохранения для элементарных частиц уже установлены из опыта, а соответствующие фундаментальные законы их поведения еще неизвестны. Поэтому законы сохранения играют здесь главенствующую роль и позволяют анализировать процессы, механизм которых еще не раскрыт.

Для элементарных частиц выполняется гораздо больше законов сохранения, чем для макроскопических процессов. Все эти законы подразделяют на точные и приближенные. Точные законы сохранения выполняются во всех фундаментальных взаимодействиях, а приближенные – только в некоторых.

Точными являются законы сохранения энергии, импульса и момента импульса. Точными являются и законы сохранения всех зарядов. Происхождение этих законов пока не установлено. Ясно только одно: каждый из этих зарядов характеризует некое внутреннее свойство частицы.

Необходимость введения зарядов (кроме электрического) было продиктовано многочисленными экспериментальными фактами, объяснить которые оказалось возможным только при допущении, что существуют заряды неэлектрической природы, которые также сохраняются.

Установлено пять зарядов: электрический Q, барионный B и три лептонных – Le, Lm и Lt. У всех элементарных частиц эти заряды имеют только целочисленные значения.

Барионный заряд. Если барионам и антибарионам приписать барионный заряд B такой, что

для антибарионов,

а всем остальным частицам – барионный заряд B = 0, то для всех процессов с участием барионов и антибарионов суммарный барионный заряд будет сохраняться. Это и называют законом сохранения барионного заряда.

Барионный заря, как и все другие заряды, аддитивен: для сложной системы частиц заряд каждого вида равен сумме зарядов того же вида всех частиц системы. Например, барионный заряд ядра атома равен сумме всех барионных зарядов нуклонов данного ядра. Другими словами, барионный заряд ядра равен его массовому числу А.

Согласно закону сохранения барионного заряда частицы с В = +1 или -1 не распадаются только на частицы с В = 0. Например, протон не может превратиться в позитрон и фотон, хотя это не запрещено законами сохранения энергии, импульса, момента и электрического заряда. Запрет на это превращение связан с нарушением закона сохранения барионного заряда В: у протона В = +1, а у позитрона и g-кванта В = 0. Если бы такое превращение было возможно, то это неизбежно привело бы к аннигиляции атомов вещества, так как образовавшиеся позитроны аннигилировали бы с атомными электронами.

Из того же закона следует, что антибарион может рождаться только в паре со своим барионом. Например, антипротон рождается в реакции

p + p ® p + p + p +`p.

Может возникнуть и два антипротона, но тогда появятся и два новых протона.

Лептонные заряды.Существуют три вида лептонных зарядов: электронный Le,(для e и ne), мюонный Lm (для m и nm) и таонный Lt (для tnt). Здесь ne, nm, nt - электронное, мюонное и таонное нейтрино. Из эксперимента следует, что это разные нейтрино.

С помощью лептонных зарядов легко интерпретируется установленный экспериментально закон, согласно которому в замкнутой системе при любых процессах разность между числом лептонов и антилептонов сохраняется (это же относится и к барионам).

Условились считать, что

Для всех остальных элементарных частиц лептонные заряды принимаются равными нулю.

Закон сохранения лептонного заряда требует, чтобы при распаде, например, нейтрона

n ® p + e- + `ne (9.2)

вместе с электроном рождалось электронное антинейтрино, так как суммарный лептонный заряд этих двух частиц равен нулю. Тем самым мы уточнили выражение, записанное ранее для распада нейтрона.

Законом сохранения лептонного заряда объясняется невозможность следующих процессов:

ne + p ¹ e+ + n, nm + p ¹ m+ + n, (9.3)

Хотя другими законами сохранения они разрешены.

Этот пример показывает, что нейтрино (как электронное, так и мюонное) не тождественны своим античастицам.

Странность S.Было обнаружено, что гипероны рождаются при столкновениях адронов высоких энергий. Значит их рождение связано с сильным взаимодействием, и время жизни гиперонов должно быть порядка 10-23 с (время, характерное для процессов, обусловленных сильным взаимодействием). На опыте же было найдено, что их время жизни в 1013 раз больше. Такое поведение гиперонов представлялось странным.

Оказалось также, что гипероны в этих процессах рождаются не поодиночке, а только парами. Например, при столкновении протонов:

p + p ® p + L0 + K+, (9.4)

причем L0-гиперон появляется только вместе с К+-мезоном или с S+-гипероном, но никогда не появляется вместе с К--мезоном или с S--гипероном.

Гипероны и К-мезоны назвали странными частицами. После рождения эти частицы медленно и независимо друг от друга распадаются за счет слабого взаимодействия.

Для количественного описания парного рождения и медленного распада странных частиц было введено квантовое число Sстранность. Поведение странных частиц можно объяснить, если считать, что частицы L0, S и К- имеют странность S = -1, частицы X - S = -2 и W--гиперон - S = -3. У соответствующих античастиц странность одинакова по модулю, но противоположна по знаку.

При этом странность в сильных и электромагнитных взаимодействиях сохраняется, а в слабых может меняться на ±1.

 

Таблица 9.3.Сведения о барионных зарядах В и странности S.

Заряды Мезоны Барионы
Нуклоны гипероны
p K+ h p n L S X W
B 0 0 0 +1 +1 +1 +1 +1 +1
S 0 +1 0 -1 -1 -2 -3

В реакции (9.4) протоны, будучи обычными частицами, странностью не обладают, их S = 0. Таким образом, 0 + 0 ® 0 – 1 + 1, т.е. странность при рождении пары странных частиц сохраняется. Распады же странных частиц на обычные (у которых S = 0) происходит с нарушением закона сохранения странности. Этим нарушением и объясняется медленность распада странных частиц.

Шарм (очарование) С и красота (прелесть) b.Эти квантовые числа являются аналогами квантового числа странности S. Они сохраняются только в сильных и электромагнитных взаимодействиях. Поскольку квантовые числа C и b присущи немногим, причем экзотическим, частицам (D- и F-мезоны, LС-, Lb-барионы), то этим и ограничимся.

– Конец работы –

Эта тема принадлежит разделу:

Теория атома водорода по Бору

Элементы квантовой механики Корпускулярно волновой дуализм свойств... Общее уравнение Шредингера Уравнение... Элементы современной физики атомов и молекул Атом водорода...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Законы сохранения

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Модель атома Томсона и Резерфорда
Представление об атомах как неделимых мельчайших частицах вещества возникло еще в античные времена (Демокрит, Эпикур, Лукреций). В средние века учение об атомах, будучи материалистическим, не смогл

Линейчатый спектр атома водорода.
Исследования спектров излучения разреженных газов (т. е. спектров излучения отдельных атомов) показали, что каждому газу присущ определенный линейчатый спектр, состоящий из отдельных спектральных л

Постулаты Бора.
Первая попытка построить качественно новую – квантовую – теорию атома была предпринята в 1913 г. датским физиком Нильсом Бором. Он поставил перед собой цель связать в единое целое эмпирические зако

Опыты Франка и Герца.
Изучая методом задерживающего потенциала столкновения электронов с атомами газов, Д. Франк и

Корпускулярно-волновой дуализм свойств вещества.
Французский ученый Луи де Бройль, осознавая существующую в природе симметрию и развивая представления о двойственной корпускулярно-волновой природе света, выдвинул в 1923 г. гипотезу об универса

Соотношение неопределенностей.
Согласно двойственной корпускулярно-волновой природе частиц вещества, для описания микрочастиц используются то волновые, то корпускулярные представления. Поэтому приписывать им все свойства частиц

Волновая функция и ее статистический смысл.
Экспериментальное подтверждение идеи де Бройля об универсальности корпускулярно-волнового дуализма, ограниченность применения классической механики к микрообъектам, а также противоречие целого ряда

Уравнение Шредингера для стационарных состояний.
Статистическое толкование волн де Бройля и соотношение неопределенностей Гейзенберга привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных сил

Атом водорода в квантовой механике.
Решение задачи об энергетических уровнях электрона для атома водорода (а также водородоподобных систем: иона гелия He+, двукратно ионизированного лития Li++ и др.) сводится к

Спин электрона. Спиновое квантовое число.
О. Штерн и В. Герлах, проводя прямые измерения магнитных моментов, обнаружили в 1922 году, что узкий пучок атомов водорода, заведомо находящихся в s-состоянии, в неоднородном магнитном поле расщепл

Фермионы и бозоны.
Если перейти от рассмотрения движения одной микрочастицы (одного электрона) к многоэлектронным системам, то проявляются особые свойства, не имеющие аналога в классической физике. Пусть квантово-мех

Распределение электронов в атоме по состояниям.
Если тождественные частицы имеют одинаковые квантовые числа, то их волновая функция симметрична относительно перестановки чисел. Отсюда следует, что два одинаковых фермиона, входящих в одну систему

Размер, состав и заряд атомного ядра. Массовое и зарядовое числа.
Э. Резерфорд, исследуя прохождение a-частиц с энергией в несколько мегаэлектрон-вольт через тонкие пленки золота, пришел к выводу о том, что атом состоит из положительно заряженного ядра и окружающ

Дефект массы и энергия связи.
Исследования показывают, что атомные ядра являются устойчивыми образованиями. Это означает, что в ядре между нуклонами существует определенная связь. Массу ядер очень точно можно определит

Систематика элементарных частиц
Бозоны и фермионы.Все частицы (включая и неэлементарные и так называемые квазичастицы) подразделяют на бозоны и фермионы. Бозоны – это частицы с нулевым или целочисле

Античастицы
Частицы и античастицы.Существование античастиц является универсальным свойством элементарных частиц. Каждой частице соответствует своя античастица: например, электрону e-

Изотопический спин.
Оказывается, что сильно взаимодействующие частицы (адроны), весьма близкие по своим физическим свойствам, можно разбить на группы, называемые изотопическими мультиплетами (дублеты, триплеты

Кварковая модель адронов
Кварки.Большое разнообразие адронов заставило усомниться в их «элементарности» и побудило к поиску более фундаментальных, первичных частиц, из которых они могли бы быть построены.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги