рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

И 7) Период. закон и пер. система Д.И. Менделеева

И 7) Период. закон и пер. система Д.И. Менделеева - раздел Химия, Основные понятия химии Открытие Периодического Закона Д.и. Менделеевым Периодический Закон ...

Открытие Периодического закона Д.И. Менделеевым

Периодический закон был открыт Д.И. Менделеевым в ходе работы над текстом учебника "Основы химии", когда он столкнулся с трудностями систематизации фактического материала. К середине февраля 1869 года, обдумывая структуру учебника, он постепенно пришел к выводу, что между свойствами и атомными массами элементов существует какая-то закономерность. Первым шагом к появлению Периодического закона стала таблица "Опыт системы элементов, основанной на их атомном весе и химическом сходстве".
Позднее Д.И. Менделеев сформулировал сам закон: "Свойства элементов, а потому и свойства образуемых ими простых и сложных тел находятся в периодической зависимости от их атомного веса".

Положив в основу своего закона сходство элементов и их соединений, Менделеев не стал слепо следовать принципу возрастания атомных масс. Он учитывал, что для некоторых элементов атомные массы могли быть определены недостаточно точно. Но даже в современной Периодической системе известны некоторые исключения в порядке возрастания масс атомов, что связано с особенностями изотопного состава элементов:

Кроме того, Менделеев оставил пустые места для еще не открытых элементов, которые были заполнены в последующие десятилетия, что лишний раз подтвердило правильность Периодического закона и Периодической системы элементов.

Каждому элементу в Периодической системе Д.И. Менделеевым был присвоен порядковый номер, исходя из увеличения атомной массы. С развитием теории строения атома был выявлен физический смысл порядкового номера. После того, как Э. Резерфорд предложил ядерную модель строения атома, юрист из Голландии А.И. Ван ден Брук (1870-1926), всю жизнь интересовавшийся проблемами физики и радиохимии, предположил, что "каждому элементу должен соответствовать внутренний заряд, соответствующий его порядковому номеру". В том же 1913 г. гипотеза Ван ден Брука была подтверждена английским физиком Г. Мозли (1887-1915) на основе рентгеноспектральных исследований. А в 1920 году ученик Резерфорда - Дж. Чедвик (1891-1974) - экспериментально определил заряды ядер атомов меди, серебра и платины. Так было показано, что порядковый номер элемента совпадает с зарядом его ядра.

Менделеев открыл Периодический закон, ничего не зная о строении атома. После того, как было доказано ядерное строение атома и равенство порядкового номера элемента заряду ядра его атома, Периодический закон получил новую формулировку: "Свойства элементов, а также образуемых ими простых и сложных веществ находятся в периодической зависимости от заряда ядра". Заряд ядра атома определяет число электронов. Электроны определенным образом заселяют атомные орбитали, причем строение внешней электронной оболочки периодически повторяется, что выражается в периодическом изменении химических свойств элементов и их соединений.

Периодический закон не имеет количественного математического выражения в виде уравнения или формулы. Формой отображения Периодического закона является таблица - периодическая система химических элементов.

Структура периодической системы элементов

Периодическая система химических элементов - естественная классификация химических элементов, являющаяся табличным выражением периодического закона Д.И. Менделеева. Прообразом Периодической системы химических элементов послужила таблица, составленная Д.И. Менделеевым 1 марта 1869 г. В 1870 г. В 1870 г. Менделеев назвал систему естественной, а в 1871 г. - периодической.

Число элементов в современной Периодической системе почти вдвое больше, чем было известно 60-х годах XIX в. (на сегодняшний день - 113), однако ее структура со времен Менделеева почти не изменилась. Хотя за всю историю Периодической системы было опубликовано более 50 различных вариантов ее изображения, наиболее популярными являются предложенные Менделеевым короткопериодная и длиннопериодная формы.

Главный принцип построения Периодической системы - выделение в ней периодов (горизонтальных рядов) и групп (вертикальных столбцов) элементов. Современная Периодическая система состоит из 7 периодов (седьмой период должен закончиться 118-м элементом). Короткопериодный вариант Периодической системы содержит 8 групп элементов, каждая из которых условно подразделяется на группу А (главную) и группу Б (побочную). В длиннопериодном варианте Периодической системы - 18 групп, имеющих те же обозначения, что и в короткопериодном. Элементы одной группы имеют одинаковое строение внешних электронных оболочек атомов и проявляют определенное химическое сходство.

Номер группы в Периодической системе определяет число валентных электронов а атомах элементов. При этом в группах, обозначенных буквой А, содержатся элементы, в которых идет заселение s- и р-подуровней - s-элементы (IA- и IIA-группы) и р-элементы (IIIA-VIIIA-группы), а в группах, обозначенной буквой Б, находятся элементы, в которых заселяются d-подуровни - d-элементы. Поскольку в каждом большом периоде должно находиться по 10 d-элементов (у которых заполняются пять d-орбиталей), то Периодическая система должна содержать 10 соответствующих групп. Однако традиционно используется нумерация групп лишь до восьми, поэтому число групп d-элементов расширяется за счет введения дополнительных цифр - это IБ-VIIБ, VIIIБ0, VIIIБ1 и VIIIБ2-группы. Для f-элементов номеров групп не предусмотрено. Обычно их условно помещают в ячейки Периодической системы, отвечающие лантану (лантаноиды) и актинию (актиноиды). Символы лантаноидов и актиноидов выносятся за пределы Периодической системы в виде отдельных рядов.

Номер периода в Периодической системе соответствует числу энергетических уровней атома данного элемента, заполненных электронами.

Номер периода = Число энергетических уровней, заполненных электронами = Обозначение последнего энергетического уровня

Порядок формирования периодов связан с постепенным заселением энергетических подуровней электронами. Последовательность заселения определяется принципом минимума энергии, принципом Паули и правилом Гунда.

Периодическое изменение свойств элементов в периоде объясняется последовательностью заполнения электронами уровней и подуровней в атомах при увеличении порядкового номера элемента и заряда ядра атома.

– Конец работы –

Эта тема принадлежит разделу:

Основные понятия химии

Химия это наука о веществах и законах их превращения Объект изучения химии являются хим элементы и их соединения Хим элементом назыв вид атомов... Закон... Порядок заполнения орбиталей электронами...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: И 7) Период. закон и пер. система Д.И. Менделеева

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Закон эквивалентов
Вещества взаимодействуют друг с другом в количествах, пропорциональных их эквивалентам. м(а)/м(б)=Э(а)/Э(б). Эквивалент - это реальная или условная частица вещества, которая эквивалентна одному ион

Электродное облако. Квантовые числа.
Электронное облако — это наглядная модель, отражающая распределение электронной плотности в атоме или молекуле. Для характеристики поведения электрона в атоме введены квантовые числа: глав

Квантово-механическая модель строения атома
В основу КММ положена квантовая теория атома, согласно которой электрон обладает как свойствами частицы, так и свойствами волны. Другими словами, о местоположении электрона в определенной точке мож

Неорганические соединения.
Кислоты - это сложные хим. соединения, состоящие из ионов Н и кислотного остатка. Подразделяются на односоставные и многосоставные, кислородосодержащие и бескислородные. Основания - это сл

Соли и их хим. свойства.
Соли — класс химических соединений, состоящих из катионов и анионов. Химические свойства определяются свойствами катионов и анионов, входящих в их состав. Соли взаимодействуют с к

Ковалентная связь. Насыщаемость и направленность.
Ковалентная связь- это хим. связь между атомами, осуществляемая обобществлёнными электронами. Ков. связь бывает полярной и неполярной. Неполярная ков. связь сущ. в молекулах где каждое ядро атома с

Основные положения теории ВС. Гибридизация.
Основные положения теории ВС: А) химическая связь между двумя атомами возникает как результат перекрывания АО с образ. электронных пар. Б) атомы, вступающие в хим. связь, обменива

Водородная связь.
Водородная связь — форма ассоциации между электроотрицательным атомом и атомом водорода H, связанным ковалентно с другим электроотрицательным атомом. В качестве электроотрицательных атомов могут вы

Донорно-акцепторная связь. Комплексные соединения.
Механизм образ. ковалентной связи за счет двух электронов одного атома (донора) и свободной орбитали другого атома (акцептора) назыв. донорно-акцепторным. Комплексные соединения - это соед

Комплексные соединения. Хим. связь в компл. Соед.
Комплексное соединение – химическое вещество, в состав которого входят комплексные частицы. Хим. связь-В кристаллических комплексных соединениях с заряженными комплексами связь между комплексом и в

Диссоциация комплексных соединений. Константы устойчивости комплексных ионов.
Диссоциация комплексного соединения проходит по двум ступеням: а) диссоциация на комплексный и простой ионы с сохранением внутренней сферы комплекса и б) диссоциация внутренней сферы, привод

Первое начало термодинамики. Закон Гесса.
1-ое начало т/д: в любом процессе изменение внутренней энергии U системы равно сумме количества переданной теплоты и совершенной работы. ΔU=Q – W Если система в

I и II законы термодинамики. Расчет тепловых эффектов химических реакций.
Формулировка I закона т/д: энергия не создается и не уничтожается, а лишь переходит из одной формы в другую в эквивалентном соотношении. Формулировка II закона т/д: в изолированной системе

Закон Гесса и следствия из него.
Закон Гесса: теплота химической реакции равна сумме теплот любого ряда последовательных реакций с теми же исходными веществами и конечными продуктами. В расчетах используют следствия закон

Понятие о стандартном состоянии и стандартных теплотах образования. Вычисление тепловых эффектов химических реакций.
Стандартные состояния — в химической термодинамике условно принятые состояния индивидуальных веществ и компонентов растворов при оценке термодинамических величин. Под стандартной теплотой

Свободная энергия Гиббса. Направление химической реакции.
Свободная энергия Гиббса (или просто энергия Гиббса, или потенциал Гиббса, или термодинамический потенциал в узком смысле) — это величина, показывающая изменение энергии в ходе химической реакции.

Скорость химической реакции. Закон действующих масс.
Химическая кинетика – раздел химии, изучающий скорость химических реакций и механизм протекания химических реакций. Скорость химической реакции – количество благоприятных столкновений част

Уравнение Аррениуса. Понятие об энергии активации.
lnk=lnA-Ea/2.3RT Энергия активации – минимальная энергия, которой должны обладать частицы, чтобы вступить в химическое взаимодействие.    

Катализаторы. Гомогенный и гетерогенный катализ.
Катализатор – вещество, изменяющее скорость химической реакции, но не вступающее в химическое взаимодействие и выводящееся в конце реакции в чистом виде. Процесс ускорения реакции в присут

Обратимые и необратимые реакции. Химическое равновесие.
Обратимые реакции – реакции, протекающие одновременно в двух противоположных направлениях. Необратимые реакции – реакции, при которых взятые вещества нацело превращаются в продукты реакции

Коллигативные свойства растворов.
Коллигативные свойства растворов — это те свойства, которые при данных условиях оказываются равными и независимыми от химической природы растворённого вещества; свойства растворов, которые зависят

Законы Рауля. Температуры кипения и замерзания растворов.
Пар, находящийся в равновесии с жидкостью, называют насыщенным. Давление такого пара над чистым растворителем (p0) называют давлением или упругостью насыщенного пара чистого ра

Осмос и осмотическое давление.
Диффузия – процесс взаимного проникновения молекул. Осмос – процесс односторонней диффузии через полупроницаемую мембрану молекул растворителя в сторону бо́льшей концентрации растворё

Растворение газов в жидкостях. Закон Генри.
На растворимость веществ влияют температура и давление. Их влияние на равновесие в растворе подчиняется принципу Ле-Шателье. Растворимость газов сопровождается: А) выделением тепл

Степень и константа электролитической диссоциации. Закон разведения Оствальда.
Электролитическая диссоциация – распад молекулы на ионы под действием полярных молекул растворителя. Э.д. подразумевает ионную проводимость раствора. Степень э.д. – величина, равная отноше

Ионное произведение воды. Водородный показатель среды.
Ионное произведение воды – величина, равная произведению катионов водорода и гидроксид ионов есть величина постоянная при данной температуре (25°с) и равна 10-14. Kw=

Электролитическая диссоциация воды. Водородный показатель среды
Вода – слабый амфотерный электролит. Молекулы воды могут как отдавать, так и присоединять катионыH+. В результате взаимодействия между молекулами в водных растворах всегда присутствует и

Степень и константа гидролиза солей.
Под степенью гидролиза подразумевается отношение части соли, подвергающейся гидролизу, к общей концентрации её ионов в растворе. Обозначается α (или hгидр); α = (cгидр

Активность и ионная сила растворов. Связь между коэффициентом активности и ионной силой раствора.
Активность компонентов раствора — эффективная (кажущаяся) концентрация компонентов с учётом различных взаимодействий между ними в растворе. a=f*c Ионная сила раствора — мера интенсивности

Понятие об электродном потенциале.
Электро́дный потенциа́л — разность электрических потенциалов между электродом и находящимся с ним в контакте электролитом (чаще всего между металлом и раствором электролита). Воз

Электродный потенциал. Уравнение Нернста.
Электро́дный потенциа́л — разность электрических потенциалов между электродом и находящимся с ним в контакте электролитом (чаще всего между металлом и раствором электролита). Выв

Газовые электроды. Уравнение Нернста для расчета потенциалов газовых электродов
Газовые электроды состоят из проводника 1-го рода, контактирующего одновременно с газом и раствором, содержащим ионы этого газа. Проводник 1-го рода служит для подвода и отвода электронов и, кроме

Гальванический элемент. Расчет ЭДС гальванического элемента.
ГАЛЬВАНИЧЕСКИЙ ЭЛЕМЕНТ - химический источник тока, в котором лектрическая энергия вырабатывается в результате прямого преобразования химической энергии окислительно-восстановительной реакцией. В со

Концентрационная и электрохимическая поляризация.
Концентрационная поляризация. Изменение потенциала электрода вследствие изменения концентрации реагентов в приэлектродном слое при прохождении тока называется концентрационной поляризацией. В свою

Электролиз. Законы Фарадея.
Электролиз — физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах,

Электролиз. Выход по току. Электролиз с нерастворимым и растворимым анодами.
Электролиз — физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах,

Основные виды коррозии. Методы защиты металлов от коррозии.
Коррозия – это процесс разрушения металлов под воздействием электрохимических или химических факторов окружающей среды. Соответственно, различают два типа коррозии, в зависимости от способа взаимод

Химическая коррозия. Скорость химической коррозии.
Химическая коррозия- коррозия, обусловленная взаимодействием Ме с сухими газами или жидкостями, не проводящими электрического тока. Скорость химической коррозии зависит от многих факторов

Коррозия под действием блуждающих токов.
Блуждающие токи, исходящие от электроустановок, работающих на постоянном токе, трамваев, метро, электрических железных дорог, вызывает появление на металлических предметах( кабелях, рельсах) участк

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги