рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Инсулин

Инсулин - раздел Химия, КУРС ЛЕКЦИЙ ПО БИОХИМИИ Рис. 18.-1. Регуляция Активности Гликогенсинтазы.   ...

Рис. 18.-1. Регуляция активности гликогенсинтазы.

 

Распад гликогена может проходить двумя путями.

1. Гидролитический – при участии амилазы с образованием декстринов и даже свободной глюкозы.

2. Фосфоролитический – под действием фосфорилазы и образованием глюкозо-1-фосфата. Это основной путь распада гликогена.

Фосфорилаза – сложный регуляторный фермент, существующий в двух формах – активной и неактивной. Активная форма (фосфорилаза а) – это тетрамер, в котором каждая субъединица соединена с остатком ортофосфата через гидроксильную группу серина. Под действием фосфатазы фосфорилазы происходит дефосфорилирование, отщепление 4 молекул фосфорной кислоты, и фосфорилаза а превращается в неактивную форму – фосфорилазу b, распадаясь на две димерные молекулы. Фосфорилаза b активируется путем фосфорилирования остатков серина за счет АТФ под действием фермента киназы фосфорилазы. В свою очередь этот фермент также существует в двух формах. Активная киназа фосфорилазы – фосфорилированный фермент, превращается в неактивную форму под действием фосфатазы. Активация киназы фосфорилазы осуществляется путем фосфорилирования за счет АТФ в присутствии ионов Mg2+ протеинкиназой.

Регуляция синтеза и распада гликогена носит каскадный характер и происходит путем химической модификации ферментов.

Поскольку синтез и распад гликогена протекают по разным метаболическим путям, эти процессы могут контролироваться реципрокно. Влияние гормонов на синтез и распад гликогена осуществляется путем изменения в противоположных направлениях активности двух ключевых ферментов: гликогенсинтазы и гликогенфосфорилазы с помощью их фосфорилирования и дефосфорилирования. Инсулин стимулирует синтез гликогена и тормозит распад, адреналин и глюкагон обладают противоположным эффектом.

Нарушения обмена гликогена

 

Гликогеновые болезни – группа наследственных нарушений в основе которых лежит снижение или отсутствие активности ферментов, катализирующих реакции синтеза или распада гликогена. К данным нарушениям относятся гликогенозы и агликогеноз.

Гликогенозы – заболевания, обусловленные дефектом ферментов участвующих в распаде гликогена. Они проявляются или необычной структурой гликогена, или его избыточным накоплением в печени, мышцах и других органах. В настоящее время предлагается деление гликогенозов на 2 группы: печеночные и мышечные.

Печеночные формы гликогенозов проявляются в нарушении использования гликогена для поддержания уровня глюкозы в крови. Общий симптом этих форм – гипогликемия в постабсорбтивный период. К этой группе относятся гликогенозы I, III, IY, YI, IX и X типов по нумерации Кори.

Мышечные формы гликогенозов характеризуются нарушениями в энергоснабжении скелетных мышц. Эти болезни проявляются при физических нагрузках и сопровождаются болями и судорогами в мышцах, слабостью и тыстрой утомляемостью. К ним относятся гликогенозы Y и YII типов.

Агликогеноз (гликогеноз О по классификации) – заболевание, возникающее в результате дефекта гликогенсинтазы. В печени и других тканях наблюдается очень низкое содержание гликогена. Это проявляется резко выраженной гипогликемией в постабсорбтивном периоде. Характерным симптомом являются судороги, особенно по утрам. Болезнь совместима с жизнью, но больные дети нуждаются в частом кормлении.

ГЛАВА 19
ЛИПИДЫ ТКАНЕЙ, ПЕРЕВАРИВАНИЕ И ТРАНСПОРТ ЛИПИДОВ

 

Липиды – неоднородная в химическом отношении группа веществ биологического происхождения, общим свойством которых является гидрофобность и способность растворяться в неполярных органических растворителях. Существует несколько классификаций липидов: физико-химическая, биологическая или физиологическая и структурная. Наиболее сложной является структурная классификация, основанная на структурных особенностях этих соединений. Согласно этой классификации, все липиды делятся на омыляемые и неомыляемые. К омыляемым относят те соединения, которые при щелочном гидролизе образуют соли жирных кислот (мыла), неомыляемые же липиды щелочному гидролизу не подвергаются.

 

 

Рис. 19.1. Классификация липидов.

*В некоторых классификациях сфингомиелины, сульфатиды, ганглиозиды и цереброзиды объединяют в группу сфинголипидов, так как все они содержат аминоспирт сфингозин.

Разделение липидов по физико-химическим свойствам учитывает степень их полярности. По этому признаку липиды делятся на нейтральные или неполярные (не имеющие заряда), и полярные (несущие заряд), например, фосфолипиды и жирные кислоты. По физиологическому значению липиды делятся на резервные и структурные. Резервные липиды депонируются в больших количествах и затем расходуются для энергетических нужд организма. К резервным липидам относятся триацилглицеролы (ТАГ). Все остальные липиды можно отнести к структурным. Они не имеют особой энергетической ценности, но участвуют в построении биологических мембран и защитных покровов.

Характерным структурным компонентом большинства липидов являются жирные кислоты. Это длинноцепочечные органические кислоты, состоящие из 4-24 углеродных атомов и содержащие одну карбоксильную группу и длинный неполярный углеводородный «хвост». В составе ТАГ жирные кислоты выполняют функцию депонирования энергии. В составе фосфолипидов и сфинголипидов жирные кислоты образуют внутренний гидрофобный слой мембран, определяя его свойства. В клетках и тканях жирные кислоты встречаются в ковалентно связанной форме в составе липидов различных классов. В свободном состоянии жирные кислоты в организме содержатся в небольшом количестве, например в крови, где они транспортируются в комплексе с белком альбумином. Большинство жирных кислот образуется в организме человека, однако линолевая и линоленовая не синтезируются, поэтому обязательно должны поступать с пищей. Эти кислоты называются незаменимыми или эссенциальными. К ним относят и арахидоновую кислоту, которая может синтезироваться в организме из линолевой при достаточном поступлении последней.

Функции липидов важны и разнообразны:

- субстратно-энергетическая: жир служит в организме весьма эффективным источником энергии либо при непосредственном использовании, либо потенциально – в форме запасов жировой ткани;

- структурная (пластическая): липиды в виде комплекса с белками являются структурными элементами мембран клеток и клеточных органелл;

- транспортная: являясь одним из основных компоненнтов клеточных мембран, липиды определяют транспорт веществ в клетки;

- механическая защита: жировая прослойка предохраняет тело и органы от механических повреждений;

- теплоизолирующая: благодаря выраженной низкой термопроводимости, липиды сохраняют тепло в организме;

- электроизолирующая: липиды являются электроизолирующим материалом, участвуя таким образом в передаче нервного импульса и, соответственно, в функционировании нервной системы;

- эмульгирующая: фосфоглицеролы и желчные кислоты стабилизируют эмульсию на поверхности раздела фаз масло-вода;

- гормональная (регуляторная): стероидные гормоны, синтезируемые из холестерола, участвуют в регуляции водно-солевого обменов, половых функций; эйкозаноиды, производные полиеновых жирных кислот, вызывают разнообразные биологические эффекты;

- витаминная: в натуральных пищевых жирах содержатся жирорастворимые витамины и незаменимые жирные кислоты;

- растворяющая: одни липиды являются растворителями для других липидных веществ.

 

Липиды тканей человека.Липиды составляют около 10-12% массы тела человека. В среднем в теле взрослого человека содержится около 10-12 кг липидов, из них 2-3 кг приходится на структурные липиды, а остальное количество – на резервные. Основная масса резервных липидов (около 98%) сосредоточена в жировой ткани и представлена ТАГ. Эти липиды являются источником потенциальной химической энергии, доступной в периоды голодания.

Содержание липидов в тканях человека существенно различается. В жировой ткани они составляют до 75% сухого веса. В нервной ткани липидов содержится до 50% сухого веса, основные из них фосфолипиды и сфингомиелины (30%), холестерол (10%), ганглиозиды и цереброзиды (7%). В печени общее количество липидов в норме не превышает 10-14%.

Жирные кислоты, характерные для организма человека, содержат чётное число атомов углерода, чаще всего – от 16 до 20. Основной насыщенной жирной кислотой в липидах человека является пальмитиновая (до 30-35%). Ненасыщенные жирные кислоты представлены моноеновыми и полиеновыми. Двойные связи в жирных кислотах в организме человека имеют цис-конфигурацию Жиры и фосфолипиды организма при нормальной температуре тела имеют жидкую консистенцию, так как количество ненасыщенных жирных кислот преобладает над насыщенными. В фосфолипидах мембран ненасыщенных кислот может быть до 80-85%, а в составе подкожного жира – до 60%.

 

Липиды пищи, их переваривание и всасывание.Взрослому человеку требуется от 70 до 145 г липидов в сутки в зависимости от трудовой деятельности, пола, возраста и климатических условий. При рациональном питании жиры должны обеспечивать не более 30% от общей калорийности рациона. Жидкие жиры (масла), содержащие в своем составе незаменимые жирные кислоты, должны составлять не менее одной трети жиров пищи.

В ротовой полости и желудке взрослого человека нет ферментов и условий для переваривания липидов. Основное место расщепления липидов – тонкий кишечник. Для увеличения поверхности соприкосновения с гидрофильными ферментами жиры должны эмульгироваться (разбиться на мелкие капли). Эмульгирование происходит под действием солей желчных кислот. Эмульгированию также способствует перистальтика кишечника и выделение пузырьков СО2, происходящее при нейтрализации кислого содержимого желудка бикарбонатом, выделяющимся в составе сока поджелудочной железы.

Основная масса липидов пищи представлена ТАГ, меньше фосфолипидами (ФЛ) и стероидами. Постадийный гидролиз ТАГ осуществляется панкреатической липазой. Она секретируется в кишечник в неактивном виде и активируется колипазой и желчными кислотами. Панкреатическая липаза гидролизует жиры преимущественно в положениях 1 и 3, поэтому основными продуктами гидролиза являются глицерол, свободные жирные кислоты, моноацилглицеролы.

Фосфолипиды гидролизуются панкреатическими фосфолипазами А1, А2, С и D. Продуктами переваривания являются глицерол, жирные кислоты, фосфорная кислота и азотистые спирты (холин, этаноламин, серин, инозитол). Эфиры холестерола (ЭХЛ) расщепляются панкреатической холестеролэстеразой на холестерол (ХЛ) и жирные кислоты. Активность фермента проявляется в присутствии желчных кислот.

Всасывание липидов происходит в проксимальной части тонкого кишечника. 3-10% жиров пищи всасывается без гидролиза в виде триацилглицеролов. Основная же часть липидов всасывается лишь в виде продуктов расщепления. Всасывание гидрофильных продуктов переваривания (глицерол, жирные кислоты с числом углеродных атомов менее 12, фосфорная кислота, холин, серин, этаноламин и др.) происходит самостоятельно, а гидрофобные (ХЛ, длинноцепочечные жирные кислоты, ди- и моноглицеролы) всасываются в составе мицелл. Главную роль в образовании мицелл играют желчные кислоты. Мицелла – это сферический комплекс, в центре которого находятся транспортируемые гидрофобные продукты переваривания, окруженные желчными кислотами. Мицеллы сближаются со щеточной каймой клеток слизистой оболочки кишечника, и липидные компоненты мицелл диффундируют через мембраны внутрь клеток. Вместе с продуктами гидролиза липидов всасываются жирорастворимые витамины и соли желчных кислот. Желчные кислоты далее по воротной вене возвращаются в печень, а липидные компоненты включаются в процесс ресинтеза. В ресинтезе ТАГ участвуют не только жирные кислоты, всосавшиеся из кишечника, но и жирные кислоты, синтезированные в организме, поэтому по составу ресинтезированные жиры отличаются от полученных с пищей. Однако возможности адаптировать в процессе ресинтеза состав пищевых жиров к составу жиров организма человека ограничены, поэтому при поступлении жиров с необычными жирными кислотами в адипоцитах появляются жиры, содержащие такие кислоты. В клетках слизистой оболочки кишечника происходит синтез ФЛ, а также образование эфиров холестерола, катализируемое ацилхолестеролацилтрансферазой.

 

Транспорт липидов.Липиды в водной среде нерастворимы, поэтому для их транспорта в организме образуются комплексы липидов с белками – липопротеины (ЛП). Различают экзо- и эндогенный транспорт липидов. К экзогенному относят транспорт липидов, поступивших с пищей, а к эндогенному – перемещение липидов, синтезированных в организме.

Существует несколько типов ЛП, но все они имеют сходное строение – гидрофобное ядро и гидрофильный слой на поверхности. Гидрофильный слой образован белками, которые называют апопротеинами, и амфифильными молекулами липидов – фосфолипидами и холестеролом. Гидрофильные группы этих молекул обращены к водной фазе, а гидрофобные – к ядру, в котором находятся транспортируемые липиды. Апопротеины выполняют несколько функций:

· формируют структуру липопротеинов (например, В-48 – основной белок ХМ, В-100 – основной белок ЛПОНП, ЛППП, ЛПНП);

· взаимодействуют с рецепторами на поверхности клеток, определяя, какими тканями будет захватываться данный тип липопротеинов (апопротеин В-100, Е);

· являются ферментами или активаторами ферментов, действующих на липопротеины (С-II – активатор ЛП-липазы, А-I – активатор лецитин:холестеролацилтрансферазы).

 

Таблица 19.1.

Характеристика и состав липопротеинов

 

Типы ЛП ХМ ЛПОНП ЛППП ЛПНП ЛПВП
Состав, % белки ФЛ ХС ЭХС ТАГ          
Функции Перенос экзоген-ных липидов Перенос эндоген-ных липидов Предшест-венник ЛПНП Перенос ХС в ткани Перенос ХС из тканей, донор апопротеинов А, С-II
Место синтеза Кишечник Печень Кровь Кровь Печень
Диаметр, нм > 120 30-100   21-100 7-15
Основные аполипо - протеины В-48 С-II Е В-100 С-II Е В-100 Е В-100 А-I С-II Е

 

При экзогенном транспорте ресинтезированные в энтероцитах ТАГ вместе с фосфолипидами, холестеролом и белками образуют ХМ, и в таком виде секретируются сначала в лимфу, а затем попадают в кровь. В лимфе и крови с ЛПВП на ХМ переносятся апопротеины Е (апо Е) и С-II (апо С-II), таким образом ХМ превращаются в «зрелые». ХМ имеют довольно большой размер, поэтому после приема жирной пищи они придают плазме крови опалесцирующий, похожий на молоко, вид. Попадая в систему кровообращения, ХМ быстро подвергаются катаболизму, и исчезают в течение нескольких часов. Время разрушения ХМ зависит от гидролиза ТАГ под действием липопротеинлипазы (ЛПЛ). Этот фермент синтезируется и секретируется жировой и мышечной тканями, клетками молочных желез. Секретируемая ЛПЛ связывается с поверхностью эндотелиальных клеток капилляров тех тканей, где она синтезировалась. Регуляция секреции имеет тканевую специфичность. В жировой ткани синтез ЛПЛ стимулируется инсулином. Тем самым обеспечивается поступление жирных кислот для синтеза и хранения в виде ТАГ. При сахарном диабете, когда отмечается дефицит инсулина, уровень ЛПЛ снижается. В результате в крови накапливается большое количество ЛП. В мышцах, где ЛПЛ участвует в поставке жирных кислот для окисления между приемами пищи, инсулин подавляет образование этого фермента.

На поверхности ХМ различают 2 фактора, необходимых для активности ЛПЛ – апоС-II и фосфолипиды. АпоС-II активирует этот фермент, а фосфолипиды участвуют в связывании фермента с поверхностью ХМ. В результате действия ЛПЛ на молекулы ТАГ образуются жирные кислоты и глицерол. Основная масса жирных кислот проникает в ткани, где может депонироваться в виде ТАГ (жировая ткань) или использоваться в качестве источника энергии (мышцы). Глицерол транспортируется кровью в печень, где в абсорбтивный период может быть использован для синтеза жиров.

В результате действия ЛПЛ количество нейтральных жиров в ХМ снижается на 90%, уменьшаютя размеры частиц, апоС-II переносится обратно на ЛПВП. Образовавшиеся частицы называются остаточными ХМ (ремнантами). Они содержат ФЛ, ХС, жирорастворимые витамины, апоВ-48 и апоЕ. Остаточные ХМ захватываются гепатоцитами, которые имеют рецепторы, взаимодействующие с этими апопротеинами. Под действием ферментов лизосом белки и липиды гидролизуются, а затем утилизируются. Жирорастворимые витамины и экзогенный ХС используются в печени или транспортируются в другие органы.

При эндогенном транспорте ресинтезированные в печени ТАГ и ФЛ включаются в состав ЛПОНП, куда входят апоВ100 и апоС. ЛПОНП представляют собой основную транспортную форму для эндогенных ТАГ. Попав в кровь, ЛПОНП получают апоС-II и апоЕ от ЛПВП и подвергаются действию ЛПЛ. В ходе этого процесса ЛПОНП сначала превращаются в ЛППП, а затем в ЛПНП. Основным липидом ЛПНП становится ХС, который в их составе переносится к клеткам всех тканей. Образовавшиеся в ходе гидролиза жирные кислоты поступают в ткани, а глицерол кровью транспортируется в печень, где опять может использоваться для синтеза ТАГ.

Все изменения содержания ЛП в плазме крови, характеризующиеся их повышением, снижением или полным отсутствием, объединяют под названием дислипопротеинемий. Дислипопротеинемия может быть либо специфическим первичным проявлением нарушений в обмене липидов и липопротеинов, либо сопутствующим синдромом при некоторых заболеваниях внутренних органов (вторичные дислипопротеинемии). При успешном лечении основного заболевания они исчезают.

К гиполипопротеинемиям относят следующие состояния.

1. Абеталипопротеинемия возникает при редком наследственном заболевании – дефекте гена апопротеина В, когда нарушается синтез белков апоВ-100 в печени и апоВ-48 в кишечнике. В результате в клетках слизистой оболочки кишечника не формируются ХМ, а в печени – ЛПОНП, и в клетках этих органов накапливаются капельки жира.

2. Семейная гипобеталипопротеинемия: концентрация ЛП, содержащих апоВ составляет лишь 10-15% нормального уровня, но организм способен образовывать ХМ.

3. Семейная недостаточность a-ЛП (болезнь Тангира): в плазме крови практически не обнаруживаются ЛПВП, а в тканях накапливается большое количество эфиров ХС, у пациентов отсутствует апоС-II, являющийся активатором ЛПЛ, что ведет к характерному для данного состояния повышению концентрации ТАГ в плазме крови.

Среди гиперлипопротеинемий различают следующие типы.

Тип I - гиперхиломикронемия. Скорость удаления ХМ из кровотока зависит от активности ЛПЛ, присутствия ЛПВП, поставляющих апопротеины С-II и Е для ХМ, активности переноса апоС-II и апоЕ на ХМ. Генетическе дефекты любого из белков, участвующих в метаболизме ХМ, приводят к развитию семейной гиперхиломикронемии – накоплению ХМ в крови. Заболевание проявляется в раннем детстве, характеризуется гепатоспленомегалией, панкреатитом, абдоминальными болями. Как вторичный признак наблюдается у больных сахарным диабетом, нефротическим синдромом, гипотиреозом, а также при злоупотреблении алкоголем. Лечение: диета с низким содержанием липидов (до 30 г/сут) и высоким содержанием углеводов.

Тип II – семейная гиперхолестеролемия (гипер-b-липопротеинемия). Этот тип делят на 2 подтипа: IIа, характеризующийся высоким содержанием в крови ЛПНП, и IIб – с повышенным уровнем как ЛПНП, так и ЛПОНП. Заболевание связано с нарушением рецепции и катаболизма ЛПНП (дефект клеточных рецепторов для ЛПНП или изменение структуры ЛПНП), сопровождается усилением биосинтеза холестерола, апо-В и ЛПНП. Это наиболее серьезная патология в обмене ЛП: степень риска развития ИБС у пациентов с этим типом нарушения возрастает в 10-20 раз по сравнению со здоровыми лицами. Как вторичное явление гиперлипопротеинемия II типа может развиваться при гипотиреозе, нефротическом синдроме. Лечение: диета с низким содержанием холестерола и насыщенных жиров.

Тип III – дис-b-липопротеинемия (широкополосная беталипопротенемия) обусловлена аномальным составом ЛПОНП. Они обогащены свободным ХС и дефектным апо-Е, тормозящим активность печеночной ТАГ-липазы. Это ведет к нарушениям катаболизма ХМ и ЛПОНП. Заболевание проявляется в возрасте 30-50 лет. Состояние характерируется высоким содержанием остатков ЛПОНП, гиперхолестеролемией и триацилглицеролемией, наблюдаются ксантомы, атеросклеротические поражения периферических и коронарных сосудов. Лечение: диетотерапия, направленная на снижение веса.

Тип IV – гиперпре-b-липопротеинемия (гипертриацилглицеролемия). Первичный вариант обусловлен уменьшением активности ЛПЛ, повышение уровня ТАГ в плазме крови происходит за счет фракции ЛПОНП, аккумуляции ХМ при этом не наблюдается. Встречается только у взрослых, характеризуется развитием атеросклероза сначала коронарных, затем периферических артерий. Заболевание часто сопровождается понижением толерантности к глюкозе. Как вторичное проявление встречается при панкреатите, алкоголизме. Лечение: диетотерапия, направленная на снижение веса.

Тип V – гиперпре-b-липопротеинемия с гиперхиломикронемией. При этом типе патологии изменения фракций ЛП крови носят сложный характер: повышено содержание ХМ и ЛПОНП, выраженность фракций ЛПНП и ЛПВП уменьшена. Больные часто имеют избыточную массу тела, возможно развитие гепатоспленомегалии, панкреатита, атеросклероз развивается не во всех случаях. Как вторичное явление гиперлипопротеинемия V типа может наблюдаться при инсулинзависимом сахарном диабете, гипотиреозе, панкреатите, алкоголизме, гликогенозе I типа. Лечение: диетотерапия, направленная на снижение веса, диета с невысоким содержанием углеводов и жиров.

 

Нарушения переваривания и всасывания липидов.Поступившие с пищей жиры, если они приняты в умеренном количестве (не более 100-150 г), усваиваются почти полностью, и при нормальном пищеварении кал содержит не более 5% жиров. Остатки жировой пищи выделяются преимущественно в виде мыл. При нарушениях переваривания и всасывания липидов наблюдается избыток липидов в кале – стеаторея (жирный стул). Различают 3 типа стеаторей.

Панкреатогенная стеаторея возникает при дефиците панкреатической липазы. Причинами такого состояния могут быть хронический панкреатит, врожденнная гипоплазия поджелудочной железы, врожденный или приобретенный дефицит панкреатической липазы, а также муковисцидоз, когда наряду с другими железами повреждается и поджелудочная. В этом случае в кале содержатся желчные пигменты, понижено содержание свободных жирных кислот и повышено ТАГ.

Гепатогенная стеаторея вызывается закупоркой желчных протоков. Это происходит при врожденной атрезии желчных путей, в результате сужения желчного протока желчными камнями, или сдавления его опухолью, развивающейся в окружающих тканях. Уменьшение секреции жёлчи приводит к нарушению эмульгирования пищевых жиров, и, следовательно, к ухудшению их переваривания. В кале больных отсутствуют желчные пигменты, высоко содержание ТАГ, жирных кислот и мыл.

Энтерогенная стеаторея отмечается при интестинальной липодистрофии, амилоидозе, обширной резекции тонкого кишечника, то есть процессах, сопровождающихся снижением метаболической активности слизистой оболочки кишечника. Для этой патологии характерен сдвиг рН кала в кислую сторону, рост содержания в кале жирных кислот.

Всасывание жиров из кишечника происходит по лимфатическим путям при активной сократительной деятельности ворсинок, поэтому жировой стул может наблюдаться также при нарушении лимфооттока в случае паралича tunicae muscularis mucosae, а также при туберкулезе и опухолях мезентериальных лимфатических узлов, находящихся на пути оттока лимфы. Ускоренное продвижение пищевого химуса по тонкому кишечнику также может быть причиной нарушения всасывания жира.

ГЛАВА 20
ОБМЕН ТРИАЦИЛГЛИЦЕРОЛОВ И ЖИРНЫХ КИСЛОТ

 

Приём пищи человеком происходит иногда со значительными интервалами, поэтому в организме выработались механизмы депонирования энергии. ТАГ (нейтральные жиры) – наиболее выгодная и основная форма депонирования энергии. Депонированный жир может обеспечивать организм энергией при голодании в течение длительного времени (до 7-8 недель). Синтез ТАГ происходит в абсорбтивный период в печени и жировой ткани. Но если жировая ткань – только место депонирования жира, то печень выполняет важную роль превращения части углеводов, поступающих с пищей, в жиры, которые затем секретируются в кровь в составе ЛПОНП и доставляются в другие ткани. Непосредственными субстратами в синтезе жиров являются ацил-КоА и глицерол-3-фосфат. Метаболический путь синтеза жиров в печени и жировой ткани одинаков, за исключением разных путей образования глицерол-3-фосфата.

Печень – основной орган, где идет синтез жирных кислот из продуктов гликолиза. В гладком эндоплазматическом ретикулюме гепатоцитов жирные кислоты активируются и сразу же используются для синтеза ТАГ, взаимодействуя с глицерол-3-фосфатом. Синтезированные жиры упаковываются в ЛПОНП и секретируются в кровь.

В жировой ткани для синтеза ТАГ используются в основном жирные кислоты, освободившиеся при гидролизе жиров ХМ и ЛПОНП. Жирные кислоты поступают в адипоциты, превращаются в производные КоА и взаимодействуют с глицерол-3-фосфатом. Кроме жирных кислот, поступающих в адипоциты из крови, в этих клетках идет и синтез жирных кислот из продуктов распада глюкозы. Молекулы ТАГ в адипоцитах объединяются в крупные жировые капли, не содержащие воды, и поэтому являются наиболее компактной формой хранения топливных молекул.

– Конец работы –

Эта тема принадлежит разделу:

КУРС ЛЕКЦИЙ ПО БИОХИМИИ

уЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ... ГРОДНЕНСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Инсулин

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

КУРС ЛЕКЦИЙ ПО БИОХИМИИ
  Пособие для студентов лечебного и педиатрического факультетов   Гродно УДК ББК К93    

Модифицированные аминокислоты, присутствующие в белках
Модификация аминокислотных остатков осуществляется уже в составе белков, т. е. только после окончания их синтеза. В молекуле коллагена присутствуют: 4-г

Пептиды
Пептид состоит из двух и более аминокислотных остатков, связанных пептидными связями. Пептиды, содержащие до 10 аминокислот, называются олигопептидами. Часто в на

Уровни структурной организации белков
  Первичная структура – строго определенная линейная последовательность аминокислот в полипептидной цепочке. Стратегические принципы изучения первичной структуры белка

Методы определения С-концевых аминокислот
  1. Метод Акабори. 2. Метод с применением карбоксипептидазы. 3. Метод с применением боргидрида натрия.   Общие закономерности, касающиеся ами

Роль шаперонов в защите белков клеток от денатурирующих стрессовых воздействий
  Шапероны, участвующие в защите клеточных белков от денатурирующих воздействий, как уже говорилось выше, относят к белкам теплового шока (БТШ) и в литературе часто обозначают как HSP

Болезни, связанные с нарушением фолдинга белков
  Расчёты показали, что лишь небольшая часть теоретически возможных вариантов полипептидных цепей может принимать одну стабильную пространственную структуру. Большинство же таких белк

Активный центр белков и избирательность связывания его с лигандом
  Активный центр белков – определённый участок белковой молекулы, как правило, находящийся в её углублении, сформированный радикалами аминокислот, собранных на определённом пространст

Роль металлов в ферментативном катализе
  Не менее важную роль отводят ионам металлов в осуществлении ферментативного катализа.   Участие металлов в электрофильном катализе. Н

Энергетические изменения при химических реакциях
Любые химические реакции протекают, подчиняясь двум основным законам термодинамики: закону сохранения энергии и закону энтропии. Согласно этим законам, общая энергия химической системы и её окружен

Роль активного центра в ферментативном катализе
  В результате исследований было показано, что молекула фермента, как правило, во много раз больше молекулы субстрата, подвергающегося химическому превращению этим ферментом. В контак

Ковалентный катализ
Ковалентный катализ основан на атаке нуклеофильных (отрицательно заряженных) или электрофильных (положительно заряженных) групп активного центра фермента молекулами субстрата с формированием ковале

Необратимое ингибирование
Необратимое ингибирование наблюдают в случае образования ковалентных стабильных связей между молекулой ингибитора и фермента. Чаще всего модификации подвергается активный центр фермента. В результа

Обратимое ингибирование
  Обратимые ингибиторы связываются с ферментом слабыми нековалентными связями и при определённых условиях легко отделяются от фермента. Обратимые ингибиторы бывают конкурентными и нек

Антиметаболиты как лекарственные препараты
В качестве ингибиторов ферментов по конкурентному механизму в медицинской практике используют вещества, называемые антиметаболитами. Эти соединения, будучи структурными аналогами природных субстрат

Регуляция каталитической активности ферментов белок-белковыми взаимодействиями.
Некоторые ферменты изменяют свою каталитическую активность в результате белок-белковых взаимодействий. Различают 2 механизма активации ферментов с помощью белок-белковых взаимодействий: ·

Регуляция каталитической активности ферментов частичным (ограниченным) протеолизом.
Некоторые ферменты, функционирующие вне клеток (в ЖКТ или в плазме крови), синтезируются в виде неактивных предшественников и активируются только в результате гидролиза одной или нескольких определ

ЭНЗИМОПАТИИ
В основе многих заболеваний лежат нарушения функционирования ферментов в клетке – энзимопатии. Приобретённые энзимопатии, как и вообще протеинопатии, по-видимому, наблюдают при всех болезнях.

Применение ферментов в качестве лекарственных средств
  Использование ферментов в качестве терапевтических средств имеет много ограничений вследствие их высокой иммуногенности. Тем не менее энзимотерапию активно развивают в следующих нап

Структура и функции ДНК
ДНК имеет первичную, вторичную и третичную структуры. Первичная структураДНК – порядок чередования дезоксирибонуклеозидмонофосфатов (дНМФ) в полинуклеотидной цепи. Сокращенно эту п

Организация генома человека
Общая длина ДНК гаплоидного набора из 23 хромосом человека составляет 3,5´109 пар нуклеотидов. Этого количества ДНК достаточно для создания нескольких миллионов генов. Однако истин

Виды и особенности структурной организации РНК
Молекула РНК построена из одной полинуклеотидной цепи. Отдельные участки цепи образуют спирализованные петли – шпильки, за счет водородных связей между комплементарными азотистыми основаниям

Гибридизация нуклеиновых кислот
Вторичная структура нуклеиновых кислот образуется за счет слабых взаимодействий – водородных и гидрофобных. При нагревании раствора ДНК такие связи разрушаются, и полинуклеотидные цепи расходятся.

Методы изучения структуры нуклеиновых кислот
В течение ряда лет о первичной структуре нуклеиновых кислот судили по косвенным данным (оценивали количество пуриновых и пиримидиновых оснований, распределение минорных оснований, особенности физич

Биосинтез ДНК
Удвоение ДНК у эукариот проходит в S-фазу клеточного цикла. Инициацию репликации регулируют специфические сигнальные белковые молекулы – факторы роста. Они связываются с рецепторами клеточных мембр

Репарация ДНК
Высокая стабильность ДНК обеспечивается не только консервативностью её структуры и высокой точностью репликации, но и наличием в клетках всех живых организмов специальных систем репарации

Биосинтез РНК
  Транскрипция – первая стадия реализации генетической информации в клетке. В ходе этого процесса происходит синтез цепи РНК, нуклеотидная последовательность которой комплементарна по

Регуляция транскрипции
  Транскрипция не связана с фазами клеточного цикла; она может ускоряться и замедляться в зависимости от потребности клетки или организма в определенном белке. Такое избирательное фун

Процессинг РНК
  Все виды РНК синтезируются в виде предшественников и нуждаются в процессинге (созревании). Процессинг мРНК начинается с кэпирования

Обратная транскрипция
  Некоторые РНК-содержащие вирусы (вирус саркомы Рауса, ВИЧ) обладают уникальным ферментом – РНК-зависимой ДНК-полимеразой, часто называемой обратной транскриптазой

Активация аминокислот
  На стадии подготовки к синтезу каждая из 20 протеиногенных аминокислот присоединяется α-карбоксильной группой к 2¢- или 3¢-гидроксильному радикалу акцепторного конца

Синтез белка у эукариот
  В ходе синтеза белка считывание информации с мРНК идет в направлении от 5¢- к 3¢-концу, обеспечивая синтез пептида от N- к C-концу. События на рибосоме включают этапы иниц

Посттрансляционные изменения белков
Многие белки синтезируются в неактивном виде (предшественники) и после схождения с рибосом подвергаются постсинтетическим структурным модификациям. Эти конформационные и структурные изменения полип

Регуляция синтеза белка
  Соматические клетки всех тканей и органов многоклеточного организма содержат одинаковую генетическую информацию, но отличаются друг от друга по содержанию тех или иных белков. Для э

Ингибиторы матричных биосинтезов
Существует большая группа веществ, ингибирующих синтез ДНК, РНК или белков. Некоторые из них нашли применение в медицине для лечения инфекционных болезней и опухолевых заболеваний, а другие являютс

Использование ДНК-технологий в медицине
Достижения в области молекулярной биологии существенно повлияли на современную медицину: они не только углубили знания о причинах многих болезней, но и способствовали разработке новых подходов в их

Специфические и общие пути катаболизма
  В катаболизме различают три стадии: 1). Полимеры превращаются в мономеры (белки – в аминокислоты, углеводы в моносахариды, липиды – в глицерол и жирные кислоты). Химическая

Метаболиты в норме и при патологии
  В живой клетке ежесекундно образуются сотни метаболитов. Однако их концентрации поддерживаются на определенном уровне, который является специфической биохимической константой или ре

УРОВНИ ИЗУЧЕНИЯ ОБМЕНА ВЕЩЕСТВ
  Уровни изучения обмена веществ: 1. Целый организм. 2. Изолированные органы (перфузируемые). 3. Срезы тканей. 4. Культуры клеток. 5. Гомо

Липиды мембран.
Мембранные липиды – амфифильные молекулы, т.е. в молекуле есть как гидрофильные группы (полярные головки), так и алифатические радикалы (гидрофобные хвосты), самопроизвольно формирующие бислой, в к

Механизмы мембранного транспорта веществ
Различают несколько способов переноса веществ через мембрану: Простая диффузия – это перенос небольших нейтральных молекул по градиенту концентрации без затрат энергии и п

Структурная организация цепи тканевого дыхания
Компоненты дыхательной цепи во внутренней мембране михохондрий формируют комплексы: I комплекс (НАДН-КоQН2-редуктаза) – принимает электо

Окислительное фосфорилирование АТФ
  Окислительное фосфорилирование – процесс образования АТФ, сопряженный с транспортом электронов по цепи тканевого дыхания от окисляемого субстрата на кислород. Электроны всегда стрем

Хемиоосмотическая гипотеза Питера Митчелла (1961г.)
Основные постулаты этой теории: внутренняя мембрана митохондрий непроницаема для ионов Н+ и ОН−; за счет энергии транспорта электронов через

Строение АТФ-синтазы
АТФ-синтаза – интегральный белок внутренней мембраны митохондрий. Он расположен в непосредственной близости к дыхательной цепи и обозначается как V комплекс. АТФ-синтаза состоит из 2 субъединиц, об

Нарушения энергетического обмена
Все живые клетки постоянно нуждаются в АТФ для осуществления различных видов деятельности. Нарушение какого-либо этапа метаболизма, приводящие к прекращению синтеза АТФ, гибельны для клетки. Ткани

Пероксидазный тип окисления
Окисление субстрата путем дегидрирования. Два атома водорода переносятся на молекулу кислорода с образованием перекиси:   ФАД-зависимая оксида

Монооксигеназный тип окисления
  Монооксигеназы (гидроксилазы) катализируют включение в субстрат одного атома молекулы кислорода. Другой атом кислорода восстанавливается до воды. Для работы монооксигеназной системы

Активные формы кислорода (свободные радикалы)
В организме в результате окислительно-восстановительных реакций постоянно происходитгенерация активных форм кислорода (АФК) при одноэлектронном восстановлении кислорода (молекула и

Перекисное окисление липидов (ПОЛ)
  Реакции ПОЛ являются свободнорадикальными и постоянно протекают в организме, также как и реакции образования АФК. В норме они поддерживаются на определенном уровне и выполняют ряд ф

Антиоксидантные системы организма
В организме токсическое действие активных форм кислорода предотвращается за счет функционирования систем антиоксидантной защиты. В норме сохраняется равновесие между окислительными (прооксидантными

Рецепторы гормонов
  Биологическое действие гормонов проявляется через их взаимодействие с рецепторами клеток-мишеней. Клетки, наиболее чувствительные к влиянию определенного гормона, называют к

Гуанилатциклазная система.
  Эта система, генерирующая цГМФ как вторичный посредник, сопряжена с гуанилатциклазой. Этот фермент катализирует реакцию образования цГМФ из ГТФ (подобно аденилатциклазе). Молекулы ц

Оксид азота.
  Оксид азота образуется из аминокислоты аргинина при участии сложной Са2+-зависимой ферментной системы, названной NO-синтазой, которая присутствует в нервной ткани, эндоте

Механизм передачи гормонального сигнала через внутриклеточные рецепторы
Передача сигнала гормонов с липофильными свойствами (стероидные гормоны) и тироксина возможна при прохождении их через плазматическую мембрану клеток-мишеней. Рецепторы гормонов находятся в цитозол

Гормоны гипоталамуса и гипофиза
  Либерины Статины Тропные гормоны гипофиза Тиреолиберин Кортиколиберин Соматолиберин Люлиберин Фол

Гормоны щитовидной железы
  Основные гормоны щитовидной железы – тироксин (тетрайодтиронин, Т4) и трийодтиронин (Т3), которые являются йодированными прои

Биологическое действие
Ткани организма по чувствительности к инсулину делятся на два типа: 1) инсулинзависимые – соединительная, жировая, мышцы; в меньшей степени чувствительна к инсулину ткань

Гипофункция поджелудочной железы
При недостаточной секреции инсулина развивается сахарный диабет. Выделяют два типа сахарного диабета: инсулинзависимый (тип I) и инсулиннезависимый (тип II). Инсул

ГЛЮКАГОН
Глюкагон – одноцепочечный полипептид, состоящий из 29 аминокислотных остатков. Синтезируется в α-клетках островков Лангерганса, в нейроэндокринных клетках кишечника. Эффекты г

Гипофункция паращитовидных желез (гипопаратиреоз)
Основной симптом гипопаратиреоза, обусловленный недостаточностью паращитовидных желез, – гипокальцемия. В результате этого повышается нервно-мышечная возбудимость, что проявляется приступами тониче

Гормоны мозгового вещества надпочечников
  В мозговом веществе надпочечников в хромаффинных клетках синтезируются катехоламины – дофамин, адреналин и норадреналин. Непосредственным предшественником катехолам

Биологическое действие
  Влияние глюкокортикоидов на метаболизм связано с их способностью координированно воздействовать на разные ткани и разные процессы как анаболические (в печени), так

Минералокортикоиды
  Альдостерон – наиболее активный минералокортикоид. Синтез и секреция альдостерона клетками клубочковой зоны надпочечников стимулируются низкой концентрацией Na

Мужские половые гормоны
  Мужские половые гормоны – андрогены (от греч. «andros» – мужской) – тестостерон, дигидротестостерон, андростерон. Синтезируются в клетках Лейдига с

Анаболические стероиды
Анаболические стероиды – синтетические вещества, близкие по структуре к андрогенам, обладающие высокой анаболической и низкой андрогенной активностью. Действие анаболических стероидов проявляется в

Женские половые гомоны
К ним относят эстрогены (С18-стероиды) и прогестины (С21-стероиды). Эстрогены образуются путем ароматизации андрогенов. В яичниках из тестост

Действие на неполовые органы
Действуя на мозг, эстрогены обеспечивают формирование полового инстинкта и психического статуса женщины. Эстрогены оказывают анаболическое действие (стиму

Эйкозаноиды
Эйкозаноиды – биологически активные вещества, синтезируемые большинством клеток из полиеновых жирных кислот, содержащих 20 углеродных атомов («эйкоза» – по гречески означает 20). Эйкозанои

Номенклатура эйкозаноидов
Простациклины – PGI2, PGI3. Простациклин PGI2 синтезируется в эндотелии сосудов, сердечной мышце, ткани матки и слизистой желудка. Он расш

Применение гормонов в медицине
1. Гормоны применяют для восполнения их дефицита в организме при гипофункции эндокринных желез (заместительная терапия): · инсулин – при сахарном диабете; · тирок

Основные характеристики водорастворимых витаминов
Название Суточная потреб-ность, мг Кофер-ментная форма Биологичес-кие функции Характерные признаки авитаминозов

Основные характеристики жирорастворимых витаминов
  Название Суточная потребность мг Биологические функции Характерные признаки авитаминозов А

Обеспеченность организма витаминами
  Источником витаминов для человека служит пища. Важная роль в образовании витаминов принадлежит кишечным бактериям, которые синтезируют ряд витаминов. Водорастворимые витамины в ткан

Гиповитаминозы
  Потребность человека в витаминах зависит от пола, возраста, физиологического состояния и интенсивности труда. Существенное влияние на потребность человека в витаминах оказывает хара

Гипервитаминозы
Болезни, возникающие вследствие избыточного приёма водорастворимых витаминов, не описаны. Физиологически необходимая часть витаминов, поступающих в организм, испо

Применение витаминов в клинической практике
  Применение витаминов в профилактических и лечебных целях можно систематизировать следующим образом. В профилактических целях: 1. Про

Антивитамины
Антивитамины – вещества, вызывающие снижение или полную потерю биологической активности витаминов. Антивитамины можно разделить на две основные группы: 1) антивитамины, которые ин

Антивитамины
  Витамин Антивитамин Механизм действия антивитамина Применение антивитамина 1. Пара-амино-бен

Транспорт глюкозы из крови в клетки
Поглощение глюкозы клетками из кровотока происходит, также путем облегченной диффузии. Следовательно, скорость трансмембранного потока глюкозы зависит только от г

Метаболизм фруктозы
Значительное количество фруктозы, образующее при расщеплении сахарозы, прежде чем поступить в систему воротной вены, превращается в глюкозу уже в клетках кишечника. Другая часть фруктозы всасываетс

Метаболизм лактозы
Лактоза, дисахарид содержится только в молоке и состоит из галактозы и глюкозы. Лактоза синтезируется только секреторными клетками желез млекопитающих в период лактации. Она присутствует в молоке в

Оксидаза
Доля глюкозы, отвлекаемой на метаболизм по пути глюкуроновой кислоты очень невелика по сравнению с большим ее количеством, расщепляемым в процессе гликолиза или синтеза гликогена. Однако проду

Регуляция синтеза триацилглицеролов
  В абсорбтивный период при увеличении соотношения инсулин/глюкагон активируется синтез ТАГ в печени. В жировой ткани индуцируется синтез липопротенлипазы (ЛПЛ), т.е в этот период акт

Регуляция мобилизации триацилглицеролов
Мобилизация депонированных ТАГ стимулируется глюкагоном и адреналином, и, но в гораздо меньшей степени, соматотропным гормоном и кортизолом. В постабсорбтивный период и при голодании глюкагон, дейс

Ожирение
Состояние, когда масса тела на 20% превышает идеальную для данного индивидуума, считают ожирением. Оно развивается, когда в жировой ткани преобладают процессы липогенеза. Образование адипоцитов про

Обмен жирных кислот
Высвобождающиеся при липолизе жирные кислоты поступают в кровоток и транспортируются в связанном с сывороточными альбуминами состоянии. Поступление СЖК сопровождается появлением в плазме также и гл

Обмен кетоновых тел
При голодании, длительной физической нагрузке и в случаях, когда клетки не получают достаточного количества глюкозы (желудочно-кишечные расстройства у детей, диета с низким содержанием углеводов, п

Синтез жирных кислот
  Синтез жирных кислот происходит в основном в печени, в меньшей степени – в жировой ткани и лактирующей молочной железе. Гликолиз и последующее окислительное декарбоксилирование пиру

Биохимия атеросклероза
Атеросклероз – это патология, характеризующаяся появлением атерогенных бляшек на внутренней поверхности сосудистой стенки. Одна из основных причин развития такой патологии – нарушение баланса между

Переваривание белков в желудочно-кишечном тракте
  Переваривание белков начинается в желудке под действием ферментов желудочного сока. За сутки его выделяется до 2,5 литров и он отличается от других пищеварительных соков сильно кисл

Расщепление белков в тканях
  Осуществляется с помощью протеолитических лизосомальных ферментов катепсинов. По строению активного центра выделяют цистеиновые, сериновые, карбоксильные и металлоп

Превращение аминокислот микрофлорой кишечника
  Микроорганизмы кишечника располагают набором ферментативных систем, отличных от соответствующих ферментов тканей организма человека и катализирующих самые разнообразные превращения

Трансаминирование аминокислот
  Трансаминирование – реакции переноса a-аминогруппы с аминокислоты на a-кетокислоту, в результате чего образуются новая кетокислота и новая аминонокислота. Реакции катализируют ферме

Биологическое значение трансаминирования
  Трансаминирование – первая стадия дезаминирования большинства аминокислот, т.е. начальный этап их катаболизма. Образующиеся при этом кетокислоты окисляются в ЦТК или используются дл

Окислительное дезаминирование глутамата
  Наиболее активно в тканях происходит дезаминирование глутаминовой кислоты. Реакцию катализирует фермент глутаматдегидрогеназа, который несколько отличается от типичных оксидаз L-ами

Непрямое дезаминирование аминокислот
  Большинство аминокислот не способно дезаминироваться в одну стадию, подобно глутамату. Аминогруппы таких аминокислот перносятся на a-кетоглутарат с образованием глутаминовой кислоты

Биогенные амины
Гистамин образуется при декарбоксилировании гистидина в тучных клетках соединительной ткани. В организме человека выполняет следующие функции: · стимулирует секрецию желуд

Пути катаболизма углеродного скелета аминокислот
Трансаминирование и дезаминирование аминокислот ведет к образованию безазотистых углеродных скелетов аминокислот – α-кетокислот. В состав белков входят 20 аминокислот, различающихся по строени

Тканевое обезвреживание аммиака
Осуществляется в тканях (головной мозг, сетчатка, мышцы, печень, почки и др.) по трем основным путям: 1. Основной путь – это связывание NH3 c глутаминовой кислотой с образование

Общее (конечное) обезвреживание аммиака
Образование и выведение аммонийных солей. Роль глутаминазы. В почках под действием глутаминазы происходит гидролиз глутамина с образованием аммиака. Этот процесс является одним и

Нарушения синтеза и выведения мочевины
Гипераммониемия – повышение концентрации аммиака в крови. Интоксикация аммиаком лежит в основе развития печеночной комы. Одной из главных причин токсичности NH3 на молек

Метаболизм метионина
Метионин – незаменимая аминокислота. Метильная группа метионина – мобильный одноуглеродный фрагмент, используемый для синтеза ряда соединений. Перенос метильной группы метионина на соответствующий

Реакция активации метионина
  Активной формой метионина является S-аденозилметионин (SAM), образующийся в результате присоединения метионина к молекуле аденозина. Аденозин образуется при гидролизе АТФ. Эту реакц

Метаболизм фенилаланина и тирозина
  Фенилаланин – незаменимая аминокислота, так как в клетках животных не синтезируется ее бензольное кольцо. Метаболизм метионина осуществляется по 2-м путям: включается в белки или пр

Фенилкетонурия
В печени здоровых людей небольшая часть фенилаланина (до 10%) превращается в фениллактат и фенилацетилглутамин. Этот путь катаболизма фенилаланина становится главным при нарушении основного пути –

Ксантинурия
Ксантинурия – наследственная энзимопатия, связанная с дефектом ксантиноксидазы, что приводит к нарушению катаболизма пуринов до мочевой кислоты. В плазме крови и моче может наблюда

Аллостерическая регуляция метаболических путей
  Аллостерические регуляторы бывают, как правило, двух типов: 1. Конечные продукты цепей последовательных реакций, регулирующие свой синтез по принципу обратной связи.

Взаимосвязь метаболизма
  Метаболизм в целом не следует понимать как сумму обменов белков, нуклеиновых кислот, углеводов и липидов. В результате взаимодействия обменов отдельных классов органических соединен

Роль печени в углеводном обмене
  Основная роль печени в углеводном обмене заключается в поддержании нормального содержания глюкозы в крови – т. е. в регуляции нормогликемии. Это достигается за счет

Обезвреживание нормальных метаболитов
1. Обезвреживание пигментов. В клетках ретикулоэндотелиальной системы печени протекает катаболизм гема до билирубина, конъюгация билирубина с глюкуроновой кислотой в гепатоцитах и р

Обезвреживание ксенобиотиков
  Обезвреживание большинства ксенобиотиков происходит в 2 фазы: I – фаза химической модификации; II – фаза коньюгации. Химическая модификация

Катаболизм гема.
Билирубин образуется при распаде гемоглобина (рис. 28.2). Этот процесс протекает в клетках печени, селезенки и костного мозга. Билирубин является основным желчным пигментом у человека. При распаде

Желтухи. Дифференциальная диагностика
Желтуха – это заболевание, характеризующееся желтой окраской кожи и слизистых в результате накопления билирубина. Основная причина этого явления – гипербилирубинемия. Причинами гипербилирубинемии м

Желтуха новорожденных
  Разновидность гемолитической желтухи новорожденных − «физиологическая желтуха». Наблюдается в первые дни жизни ребенка. Причинами повышения концентрации непрямого билирубина в

Биохимические механизмы развития печеночной недостаточности
  Печеночная недостаточность – состояние, объединяющее различные нарушения функции печени, которые могут в дальнейшем полностью компенсироваться, прогрессировать или

Биохимические методы диагностики поражений печени
  Биохимические лабораторные тесты могут быть высокочувствительными индикаторами повреждения печени. Результаты биохимических анализов указывают на природу болезни печени, позволяют о

Распределение жидкости в организме
Для выполнения специфических функций клеткам необходима устойчивая среда обитания, включая стабильное обеспечение питательными веществами и постоянное выведение продуктов обмена. Основу внутренней

Растворенные вещества
  В жидкостях организма содержатся два типа растворенных веществ – неэлектролиты и электролиты. 1. Неэлектролиты. Вещества, которые не диссоциируют в растворе и измеряются по

Вода, биологическая роль, обмен воды
Вода в организме находится в трех состояниях: 1. Конституционная (прочно связанная) воды, входит в структуру белков, жиров, углеводов. 2. Слабосвязанная воды диффузионных слоев и

Регуляция объема внеклеточной жидкости
  Значительные колебания объема интерстициальной части внеклеточной жидкости могут наблюдаться без выраженного влияния на функции организма. Сосудистая часть внеклеточной жидкости мен

Нарушения кислотно-основного равновесия
  Нарушения наступают при не способности механизмов поддержания КОР предотвращать сдвиги. Могут наблюдаться два крайних состояния. Ацидоз – повышения концентрации ионов водорода или п

Основные биологические функции
  1. Структурная – участвуют в формировании пространственной структур биополимеров и других веществ. 2. Кофакторная – участие в образовании активных центров ферментов.

Кальций, биологическая роль, обмен, регуляция
  Биологическая роль: · структура костной ткани, зубов; · мышечное сокращение; · возбудимость нервной системы; · внутриклеточный посредник г

Фосфор, биологическая роль, обмен, регуляция
  Биологическая роль: · образование (совместно с кальцием) структуры костной ткани; · строение ДНК, РНК, фосфолипидов, коферментов; · образование мак

Эссенциальные микроэлементы
  Эссенциальные микроэлементы – микроэлементы без которых организм не может расти, развиваться и совершать свой естественный жизненный цикл. К эссенциальным элементам относятся: желез

Функции крови
  Кровь осуществляет транспорт различных химических веществ по кровеносным сосудам. 1. Дыхательная функция – перенос кислорода из легких в ткани и СО2 из тканей в

Особенности метаболизма в форменных элементах крови
Эритроциты: 1. Зрелые эритроциты лишены ядра, поэтому в клетке не синтезируются белки. Эритроцит почти целиком заполнен гемоглобином. 2. Эритроциты не имеют митох

Производные гемоглобина
  Молекула гемоглобина взаимодействует с различными лигандами, образуя производные гемоглобина. 1. Дезоксигемоглобин – ННb – не связанный с

Гемоглобинопатии
  Все структурные аномалии белковой части гемоглобина называют гемоглобинозами. Различают: · гемоглобинопатии; · талассемии. Гемогл

Обмен железа
  В организме взрослого человека содержится 3-4 г железа, из этого количества около 3,5 г находится в плазме крови. Гемоглобин эритроцитов содержит примерно 68 % всего железа организм

Железодефицитные анемии
  Железодефицитные анемии развиваются в результате нарушения обмена железа. Встречаются чаще других форм анемий. Основные причины: - хронические кро

Характеристика белков сыворотки крови
  Белки системы комплемента –к этой системе относятся 20 белков, циркулирующих в крови в форме неактивных предшественников. Их активация происходит под действием спец

Гемофилии
  Гемофилин –наследственные заболевания, обусловленные отсутствием определенных факторов свертывания крови. Гемофилия А связана с дефицитом фактора VIII, гемофилия В

Особенности биохимических процессов в почечной ткани
  · Высокая интенсивность энергетического обмена. Большие затраты АТФ связаны с процессами активного транспорта при реабсорбции, секреции, а также с биосинтезом белков. Основной путь

Функции аксонального плазматического тока
  1. Непрерывное возмещение составных частей нейрона в норме и при патологии. 2. Освобождение веществ из нейрона в связи с синаптическим переносом, его трофическими и другими

Обмен свободных аминокислот в головном мозге
Аминокислоты играют важную роль в метаболизме и функционировании ЦНС. Это объясняется не только исключительной ролью аминокислот как источников синтеза большого ч

Нейропептиды
  В последнее время значительно увеличился интерес к управлению важнейшими функциями мозга с помощью пептидов. Открыто достаточно большое количество пептидов, способных в очень низких

Энергетический обмен в нервной ткани
  Характерными чертами энергетического обмена в ткани головного мозга являются: 1. Высокая его интенсивность в сравнении с другими тканями. 2. Большая скорость потре

Нейрохимические основы памяти
  Память – сложный и еще не достаточно изученный процесс, включающий фазы запечатления, хранения и извлечения поступающей информации. Все эти фазы тесно связаны между собой, и нередко

Спинномозговая жидкость (ликвор или цереброспинальная жидкость)
Общее количество ликвора у взрослого человека составляет 100-150 мл, у детей 80 – 90 мл. Скорость образования ликвора колеблется в пределах 350-750 мл/сутки. Обновляется ликвор 3 – 7 раз в сутки, ч

Белки мышечной ткани
  Выделяют три группы белков: · миофибриллярные белки – 45 %; · саркоплазматические белки – 35 %; · белки стромы – 20 %. I. Миофибриллярные

Биохимические механизмы сокращения и расслабления мышц
Биохимический цикл мышечного сокращения состоит из 5 стадий: · 1-2-3 – стадии сокращения; · 4-5 – стадии расслабления. 1 стадия – в стадии покоя миозинов

Роль ионов кальция в регуляции мышечного сокращения
Ключевая роль в регуляции мышечного сокращения принадлежит ионам кальция (Са2+). Миофибриллы обладают способностью взаимодействовать с АТФ и сокращаться лишь при наличии в среде определе

Биохимия мышечного утомления
  Утомление – состояние организма, возникающее вследствие длительной мышечной нагрузки и характеризующееся временным снижением работоспособности.

Коллаген.
В межклеточном матриксе молекулы коллагена образуют полимеры, называемые фибриллами коллагена. Они обладают огромной прочностью и практически не растяжимы (они могут выдерживать нагрузку в 10 000 р

Эластин
  В отличие от коллагена, образующего прочные фибриллы, эластин обладает резиноподобными свойствами. Нити эластина, содержащиеся в тканях легких, в стенках сосудов, в эластичных связк

Протеогликаны и гликопротеины
  Протеогликаны – высокомолекулярные соединения, состоящие из белка (5-10%) и гликозаминогликанов (90-95%). Они образуют основное вещество межклеточного матрикса. Гликозамино

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги