Инструментальные методы анализа

В последние годы все более широкое применение получают инструментальные метода анализа, обладающие многими достоинствами: быстротой, высокой чувствительностью, возможностью одновременного определения нескольких компонентов, сочетания нескольких методов, автоматизации и использования компьютеров для обработки результатов анализа. Как правило, в инструментальных методах анализа применяются сенсоры (датчики), и, прежде всего, химические сенсоры, которые дают информацию о составе среды, в которой они находятся. Сенсоры связаны с системой накопления и автоматической обработки информации.

Условно инструментальные методы анализа можно разделить на три группы: спектральные и оптические, электрохимические и хроматографические методы анализа.

Спектральные и оптические методы анализа основаны на взаимодействии определяемого вещества и электромагнитного излучения (ЭМИ). Методы классифицируются по нескольким признакам – принадлежности ЭМИ к определенной части спектра (УФ – спектроскопия, фотоэлектроколориметрия, ИК – спектроскопия), уровню взаимодействия веществ, с ЭМИ (атом, молекула, ядро атома), физическим явлением (эмиссия, абсорбция и т.д.). Классификация спектральных и оптических методов по основным признакам приведена в табл. 12.

Атомно-эмиссионная спектроскопия – группа методов анализа, основанных на измерении длины волны и интенсивности светового потока, излучаемого возбужденными атомами в газообразном состоянии.

Таблица 12.

Классификация спектральных и оптических методов

Физическое явление Уровень взаимодействия
Атом Молекула
Спектральные методы
Поглощение света (адсорбция) Атомно-адсорбционная спектроскопия (ААС) Молекулярно-адсорбционная спектроскопия (МАС): фотоэлектроколориметрия, спектрофотометрия
Излучение света (эмиссия) Атомно-эмиссионная спектроскопия (АЭС): фотометрия пламени Молекулярно-эмиссионная спектроскопия (МЭС): люминесцентный анализ
Вторичная эмиссия Атомно-флуорисцентная спектроскопия (АФС) Молекулярно- флуорисцентная спектроскопия (МФС)
Рассеивание света - Спектроскопия рассеяния: нефелометрия, турбидеметрия
Оптические методы
Преломление света - Рефрактометрия
Вращение плоскополяризованного света - Поляриметрия

При эмиссионном анализе определяемое вещество, находящееся в газовой фазе, подвергают возбуждению, сообщая системе энергию в виде ЭМИ. Энергия, необходимая для перехода атома из нормального в возбужденное состояние, называется энергией возбуждения (потенциалом возбуждения). В возбужденном состоянии атом находится 10-9 – 10-8 с, затем, возвращаясь на более низкий энергетический уровень, испускает квант света в строго определенной частоты и длины волны.

Элементы, содержащиеся в пробе, идентифицируют по набору спектральных линий (на основании частот или длин волн), испускаемых ЭМИ. Количественный анализ основан на измерении интенсивности спектральных линий элементов.

Фотометрия пламени – метод анализа, основанный на фотометрировании излучения возбужденных в пламени атомов. Вследствие высокой температуры в пламени возбуждаются спектры элементов, имеющие низкую энергию возбуждения, - щелочные и щелочноземельные металлы.

Качественный анализ проводят по окраске перлов пламени и характерным спектральным линиям элементов. Летучие соединения металлов окрашивают пламя горелки в тот или иной цвет. Поэтому, если внести изучаемое вещество на платиновой или нихромовой проволоке в бесцветное пламя горелки, то происходит окрашивание пламени в присутствии веществ тех или иных элементов, например, в цвета: ярко-желтый (натрий), фиолетовый (калий), кирпично-красный (кальций), карминово-красный (стронций), желто-зеленый (медь или бор), бледно-голубой (свинец или мышьяк).

Количественный анализ основан на эмпирической зависимости интенсивности спектральной линии определяемого элемента от его концентрации в пробе с использованием градуировочного графика.

Фотоэлектроколориметрия основана на поглощении света определяемым веществом в видимой области спектра (400 – 760 нм); это разновидность молекулярно-адсорбционной спектроскопии. В ходе анализа поток света, походя через светопоглощающий раствор, частично рассеивается, преломляется, но большая часть поглощается, и поэтому на выходе интенсивность потока света меньше, чем на входе. Этот метод применяют для качественного и количественного анализа истинных растворов.

Турбидиметрический метод основан на поглощении и рассеивании монохроматического света взвешенными частицами анализируемого вещества. Метод применяется для анализа суспензий, эмульсий, при определении в растворах, природных и технологических водах веществ (хлориды, сульфаты, фосфаты), способных образовывать труднорастворимые соединения.

К оптическим методам анализа относятся рефрактометрия и поляриметрия.

Рефрактометрический метод основан на преломлении света при прохождении луча через границу раздела прозрачных однородных сред. При падении луча света на границу раздела двух сред происходит частичное отражение от поверхности раздела и частичное распространение света в другой среде. Метод используют для идентификации и частоты веществ, количественного анализа.

Поляриметрия– оптический неспектральный метод анализа, основанный на вращении плоскополяризованного монохроматического луча света оптически активными веществами. Метод предназначен для качественного и количественного анализа только оптически активных веществ (сахарозы, глюкозы и др.), способных вращать плоскость поляризации света.

Электрохимические методы анализа основаны на измерении потенциалов, силы тока и других характеристик при взаимодействии анализируемого вещества с электрическим током. Эти методы делятся на три группы: методы, основанные на электродных реакциях, протекающих в отсутствии тока (потенциометрия); методы, основанные на электродных реакциях, протекающих под действием тока (вольтамперометрия, кулонометрия, электрогравиметрия); методы, основанные на измерениях без протекания электродной реакции (кондуктометрия – низкочастотное титрование и осциллометрия– высокочастотное титрование).

По приемам применения электрохимические методы классифицируются на прямые, основанные на непосредственной зависимости аналитического сигнала от концентрации вещества, и косвенные(установление точки эквивалентности при титровании).

Для регистрации аналитического сигнала необходимы два электрода – индикаторный и электрод сравнения. Электрод, потенциал которого зависит от активности определяемого ионов, называется индикаторным. Он должен быстро и обратимо реагировать на изменение концентрации определяемых ионов в растворе. Электрод, потенциал которого не зависит от активности определяемых ионов и остается постоянным, называется электродом сравнения. Например, при определении рН растворов в качестве индикаторного электрода используют стеклянный электрод, а электрода сравнения – хлорсеребряный (см. тему 9).

Потенциометрический метод основан на измерении электродвижущих сил обратимых гальванических элементов и применяется для определения концентрации (активности) ионов в растворе. При расчетах используют уравнение Нернста.

Вольтамперометрия – группа методов, основанных на процессах электрохимического окисления или восстановления определяемого вещества, протекающих на микроэлектроде и обусловливающих возникновение диффузного тока. Методы основаны на изучении вольтамперных кривых (вольтамперограмм), отражающих зависимость силы тока от приложенного напряжения. Вольтамперограммы позволяют одновременно получить информацию о качественном и количественном составе анализируемого раствора, а также о характере электродного процесса.

В методах вольтамперометрии применяют двух- и трехэлектродные ячейки. Индикаторные электроды – рабочие поляризуемые электроды, на которых протекают процессы электроокисления или электровосстановления вещества; электроды сравнения – электроды второго рода (насыщенные хлорсеребряный или каломельный).

Если в качестве рабочего поляризуемого электрода применяют ртутный капающий с постоянно обновляющейся поверхностью, а электродом сравнения служит слой ртути на дне ячейки, то метод называется полярографией.

В современной вольтамперометрии применяют любые индикаторные электроды (вращающиеся или стационарный платиновый или графитовый, стационарный ртутный), кроме капающего ртутного электрода.

Кондуктометрический метод основан на измеренииэлектрической проводимости растворов в зависимости от концентрации присутствующих заряженных частиц. Объекты анализа – растворы электролитов. Электрическая проводимость разбавленных растворов пропорциональна концентрации электролитов. Поэтому, определив электрическую проводимость и сравнив полученное значение со значением на калибровочном графике, можно найти концентрацию электролита в растворе. Методом кондуктометрии, например, определяют общее содержание примесей в воде высокой чистоты.

Хроматогафические методы разделения, идентификации и количественного определения основаны на различных скоростях движения отдельных компонентов в потоке подвижной фазы вдоль слоя неподвижной фазы, причем анализируемые вещества находятся в обеих фазах. Эффективность разделения достигается за счет многократно повторяющихся циклов сорбция – десорбция. При этом компоненты по-разному распределяются между подвижной и неподвижной фазами в соответствии с их свойствами, в результате происходит разделение. Условно хроматографические методы можно разделить на газовую хроматографию, ионообменную и бумажную.

Газовая хроматография – метод разделения летучих термостабильных соединений, основанный на распределении веществ между фазами, одна из которых – газ, другая – твердый сорбент или вязкая жидкость. Разделение компонентов смеси происходит из-за различной адсорбционной способности или растворимости анализируемых веществ при движении их газообразной смеси в колонке с потоком подвижной фазы вдоль неподвижной фазы.

Объекты анализа в газовой хроматографии – газы, жидкости и твердые вещества с молекулярной массой менее 400 и температурой кипения менее 300 0С. При хроматографическом разделении анализируемые соединения не должны подвергаться деструкции.

Ионообменная хроматография – метод разделения и анализа веществ, основанный на эквивалентном обмене ионов анализируемой смеси и ионообменника (ионита). Происходит обмен ионами между фазами гетерогенной системы. Неподвижной фазой являются иониты; подвижной, как правило, вода, так как обладает хорошими растворяющими и ионизирующими свойствами. Соотношение концентраций обменивающихся ионов в растворе и фазе сорбентов (ионита) определяется ионообменным равновесием.

Хроматография на бумаге относится к плоскостной хроматографии, она основана на распределении анализируемых веществ между двумя несмешивающимися жидкостями. В распределительной хроматографии разделение веществ происходит вследствие различия коэффициентов распределения компонентов между двумя несмешивающимися жидкостями. Вещество присутствует в обеих фазах в виде раствора. Неподвижная фаза удерживается в порах хроматографической бумаги, не взаимодействуя с ней, бумага выполняет функцию носителя неподвижной фазы.

Таким образом, использование законов электрохимии, сорбции, эмиссии, поглощения или отражения излучения и взаимодействия частиц с магнитными полями, позволило создать большое число инструментальных методов анализа, характеризуемых высокой чувствительностью, быстротой и надежностью определения, возможностью анализа многокомпонентных систем.

 

Вопросы для самоподготовки:

1. Что такое химическая идентификация вещества?

2. Какие виды анализа вам известны?

3. Что такое чистота веществ?

4. Как проводят идентификацию катионов неорганических веществ?

5. Как проводят идентификацию анионов неорганических веществ?

6. Как классифицируются методы количественного анализа?

7. Каковы основы гравиметрического метода анализа?

8. Какова характеристика титриметрических методов анализа?

9. Какова характеристика химических методов анализа?

10. Как классифицируют инструментальные методы анализа?

11. Каковы основы электрохимических методов анализа?

12. Каковы основы хроматографических методов анализа?

13. Каковы основы оптических методов анализа?

 

Литература:

1. Ахметов Н.С. Общая и неорганическая химия. М.:Высшая шк. – 2003, 743 с.

2. Ахметов Н.С. Лабораторные и семинарские занятия по общей и неорганической химии. М.: Высшая шк. – 2003, 367 с.

3. Васильев В.П. Аналитическая химия. - М.: Высш. шк. – 1989, Ч. 1, 320 с, Ч. 2., 326 с.

4. Коровин Н.В. Общая химия. - М.: Высш. шк. – 1990, 560 с.

5. Глинка Н.Л. Общая химия. – М.: Высш. шк. – 1983, 650 с.

6. Глинка Н.Л. Сборник задач и упражнений по общей химии. – М.: Высш. шк. – 1983, 230 с.

7. Общая химия. Биофизичекая химия. Химия биогенных элементов./ Под ред Ю.А. Ершова - М.: Высш. шк. – 2002, 560 с.

8. Фролов В.В. Химия. – М.: Высш. шк. – 1986, 450 с.