рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Nbsp;   Лекция 6. Основы химической кинетики

Nbsp;   Лекция 6. Основы химической кинетики - Конспект Лекций, раздел Химия, Химия. Конспект лекций   Раздел Химии, В Котором Изучаются Скорости И Механизмы Х...

 


Раздел химии, в котором изучаются скорости и механизмы химических реакций, называется химической кинетикой. Рассмотрим основные понятия химической кинетики.

Система – материальный объект (тело или группа тел), занимающий часть пространства и выделенный из окружающего мира реально существующими или воображаемыми поверхностями (границами) раздела.

Различают гомогенную и гетерогенная системы:

1. Гомогеннаясистема, которая одинакова и однородна во всех точках и представляет собой одну фазу, (пример: раствор соли).Фазаэто совокупность однородных материальных частей системы, отделенных от других частей поверхностями раздела.

2. Гетерогеннаясистема, состоящая из нескольких фаз (пример: вода со льдом).

Химические реакции, протекающие в гомогенных системах, называются, гомогенными, а реакции, протекающие в гетерогенных системах – гетерогенными.

Скорость гомогенной химической реакции – это количество вещества (Δn), вступившего в реакцию или образовавшегося в результате химической реакции за единицу времени (t) в единице объема системы (V):

,

где n1 – число молей реагирующего вещества в момент времени t1; n2 – число молей реагирующего вещества в момент времени t2; V – объем реакционного сосуда.

При постоянном объеме реакционного сосуда – изменение молярной концентрация вещества (ΔС). Таким образом, скорость гомогенных химических реакций можно выразить следующим уравнением: .

Следовательно, скорость гомогенной реакции равна изменению концентрации какого-либо из реагирующих веществ в единицу времени и выражается в моль/(л×с). Знак «+» ставится в том случае, если ΔС – концентрация продукта реакции. Знак «–» – если ΔС – концентрация исходного вещества.

Скоростью гетерогенной реакции называется количество вещества, которое вступает в реакцию или образуется в результате реакции в единицу времени на единице поверхности раздела фаз S:

.

Скорость любой химической реакции зависит от следующих факторов:

1) природы реагирующих веществ;

2) концентрации реагирующих веществ;

3) температуры;

4) присутствия катализаторов.

Скорость гетерогенных реакций зависит также от: величины поверхности раздела фаз, скорости подвода реагирующих веществ к поверхности раздела фаз и скорости отвода от нее продуктов реакции.

Зависимость скорости химической реакции от концентрации реагирующих веществ выражается законом действующих масс (Гульдберг и Вааге, Норвегия, 1867 г.). Скорость химической реакции пропорциональна концентрациям реагирующих веществ.

Так, например, для реакции

aA + bB ® cC + dD

скорость реакции определяется уравнением ν = k САа СBb (закон действующих масс), где СА и СB – концентрации исходных веществ; k – константа скорости химической реакции, которая равна скорости химической реакции при концентрациях реагирующих веществ, равных 1 моль/л.

Константа скорости не зависит от концентрации, а зависит только от температуры, наличия катализатора и природы реагирующих веществ.

Зависимость скорости химической реакции от температуры выражается правилом Вант-Гоффа. При повышении температуры на каждые 10° скорость большинства реакций в определенной области температур возрастает в 2–4 раза:

,

где g – температурный коэффициент химической реакции, который показывает, во сколько раз увеличивается скорость химической реакции при повышении температуры на 10°; vt1 и vt2 – скорости химических реакции при температурах t1 и t2, соответственно.

Из последнего уравнения видно, что небольшое увеличение температуры вызывает резкое повышение скорости химической реакции. Этот факт объясняет теория активных молекул (теория активных соударений). Согласно этой теории, для того чтобы произошла химическая реакция, реагирующие молекулы должны столкнуться (т.е. скорость зависит от общего числа столкновений). Однако не все столкновения приведут к химической реакции. Во-первых, сталкивающиеся молекулы должны соударяться определенным местом, т.е. удар должен производиться в реакционную часть молекулы. Для этого молекулы должны быть определенным образом в момент соударения ориентированы (стерический фактор).

Во-вторых, наличие сил отталкивания между молекулами приводит к тому, что в химической реакции могут участвовать только те молекулы, энергия которых больше средней энергии молекул на какую-то определенную величину. Эта избыточная энергия называемая энергией активации(E, Дж/моль), онапозволяет преодолеть энергию отталкивания между молекулами. Молекулы, избыточная энергия которых больше, чем значение энергии активации, называются активными молекулами. Чем больше число активных молекул, тем больше скорость химической реакции. При повышении температуры число активных молекул (N) резко возрастает и определяется уравнением Максвелла-Больцмана: N = NA exp(–E / RT), где NA – постоянная Авогадро.

Зависимость скорости химической реакции (или ее константы k) от температуры (Т) выражается уравнением Аррениуса:

lnk = lnAE / RT, или k = A e(–E / RT),

где А – постоянная для данной реакции величина и зависящая от общего числа столкновений и стерического фактора.

Одним из важнейших факторов, влияющих на скорость химических реакций, является присутствие катализатора. Катализатор – это вещество, которое, участвуя в химической реакции, изменяет скорость химической реакции, но само при этом не расходуется. Явление изменения скорости химической реакции при участии катализатора – катализ. Реакции, протекающие с участием катализаторов – каталитические. Катализ бывает гомо- и гетерогенным. Если реагенты и катализатор находятся в одном агрегатном состоянии, то такой катализ называется гомогенным. В случае гетерогенного катализа реагенты и катализатор находятся в разном агрегатном состоянии. Катализатор может ускорить только ту реакцию, для которой изобарно-изотермический потенциал меньше нуля (ΔG < 0), т.е. реакция может протекать самопроизвольно. Механизм действия катализатора очень сложен и сводится к образованию промежуточных нестабильных соединений, образование которых осуществляется с меньшим значением энергии активации.

Вещества, которые уменьшают скорость реакции, называются ингибиторами.

Катализ играет огромную роль не только в химии, но и в биологии. Практически все биохимические процессы протекают с участием биологических катализаторов – ферментов, которые по своей природе являются белками.

Как правило, химические реакции являются сложными и состоят из двух или нескольких простых реакций. Химические реакции могут быть разделены на необратимые (идут до конца) и обратимые (до конца не протекают), а также параллельные (реакции, в которых из одного вещества получается два или больше). Последовательные реакции – это реакции, в которых продукты превращения исходного вещества являются исходным веществом для получения третьего и т.д. Реакция, которая протекает наиболее медленно, называется лимитирующей.

Цепныереакции – это реакции, в которых в каждом элементарном акте возникает одна или несколько активных частиц, что вызывает цепь превращений.

Наиболее интересными являются сопряженные реакции (реакции, в которых одна реакция протекает только при осуществлении какой-либо определенной другой реакции, при этом происходит перераспределение энергии от одной реакции (ΔG < 0) к другой (ΔG > 0)) и колебательные,илипериодические (данные реакции характеризуются колебаниями концентраций некоторых промежуточных соединений и, соответственно, скорости превращения).

– Конец работы –

Эта тема принадлежит разделу:

Химия. Конспект лекций

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ... Химия Конспект лекций для первокурсника...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Nbsp;   Лекция 6. Основы химической кинетики

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ПЕНЗА ИИЦ ПГУ 2004
УДК 54 Х46   Рецензент: кандидат технических наук, профессор кафедры «Химическое машиностроение и электрохимическое производство»

Nbsp;   ЛЕКЦИЯ 1. Теория строения атома
Общие сведения о структуре атома. Атом – сложная микросистема, состоящая из множества микрочастиц, подчиняющихся законам микромира. С точки зрения химии, атом – на

Основные положения квантовой механики.
В 1900 г Макс Планк предположил, что поглощение либо испускание энергии может осуществляться строго определенными дискретными порциями – квантами: Е = hν, гд

Квантовые числа.
1. Главное квантовое число n (n = от 1 до ¥ ) определяет энергию электрона (ē) на уровне в атоме, Е = –A/n2 и радиус наибольшей вероятности его нахождения r

Правила заполнения электронами уровней и подуровней.
Принцип Паули: «в атоме не может быть двух электронов в одинаковых квантовых состояниях». Из этого вытекает, что на s подуровне может располагаться только два электрона,

СИСТЕМА ЭЛЕМЕНТОВ Д.И. Менделеева
Свойства химических элементов, а также формы и свойства их соединений находятся в периодической зависимости от зарядов ядер их атомов(современная формулировка периодического зак

Относительная электроотрицательность элементов I–IV периодов
(по Полингу)   I II III IV V VI VII VIII

Межмолекулярное взаимодействие
  Лишь немногие элементы (благородные газы) находятся в обычных условиях в состоянии одноатомного газа. Атомы остальных – входят в состав молекул или кристаллических решеток. Причина

Nbsp;   Лекция 4. Элементы химической термодинамики
Основные понятия и величины.Химическая термодинамика – наука, изучающая переходы энергии из одной формы в другую при химических реакциях и устанавливающая направление и

Nbsp;   Лекция 5. Химическое равновесие
  Обратимые реакции не доходят до конца и заканчиваются установлением химического равновесия. Состояние равновесия наиболее устойчиво, и всякое отклонение от него требует

Лекция 7. Растворы
Раствором называется гомогенная система (твердая, жидкая или газообразная), состоящая из двух или более компонентов. То вещество, которого больше, называют растворителем.

Лекция 8. Растворы электролитов
  По способности проводить электрический ток в водном растворе или в расплаве вещества делятся на электролиты и неэлектролиты. Электролитами называются вещества, раст

Nbsp;   Лекция 9. Химические реакции. Окислительно-восстановительные реакции
Химическая реакция – взаимодействие реальных частиц (молекул, ионов, атомов), которое приводит к изменению их физико-химических свойств без изменения природы химических элемен

Электродный потенциал
Возникновение электродного потенциала металла.Электроны в металле занимают энергетические уровни, образующие зоны. Эти зоны расположены ниже уровня энергии свободного электрона. Ес

Лекция 11. Химические источники тока
Электрохимия –естественнонаучная дисциплина, котораяизучает физико-химические свойства ионных растворов и расплавов, а также явления, которые протекают на границе раздела фаз с уча

Nbsp;   Лекция 12. Электролиз
Электролизом называются процессы окисления и восстановления веществ, происходящие на поверхности электродов под действием электрического тока. При электролизе происходит превр

Nbsp;   Лекция 13. Коррозия металлов
Коррозия (разъедание, разрушение) – это самопроизвольный процесс разрушения металлического изделия в результате его взаимодействия с веществами окружающей среды

Nbsp;   Лекция 15. Общие химические свойства металлов
С химической точки зрения металл – это элемент, который во всех соединениях проявляет положительную степень окисления.Из известных в настоящее время 109 элементов 86 являются

Лекция 17. ДИСПЕРСНЫе СИСТЕМы
  Коллоидное состояние характеризуется определенной дисперсностью (раздробленностью) вещества. Вещество в этом состоянии диспергировано до очень малых частиц или пронизано тончайшими

ПОВЕРХНОСТНЫЕ ЯВЛЕНИЯ
  На границе раздела фаз в поверхностном слое существует избыток свободной энергии. Это связано с тем, что на границе раздела с газом, силы межмолекулярного взаимодействия с жидкой фа

Дополнительная
5. Электрохимия : учеб. пособие / Э. Г. Яковлева, Т. К. Семченко [и др.]. – Пенза : Изд-во Пенз. гос. ун-та, 2000. 6. Общие химические и физические свойства металлов : учеб. пособие /

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги