рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

СИСТЕМА ЭЛЕМЕНТОВ Д.И. Менделеева

СИСТЕМА ЭЛЕМЕНТОВ Д.И. Менделеева - Конспект Лекций, раздел Химия, Химия. Конспект лекций Свойства Химических Элементов, А Также Формы И Свойства Их Соединений...

Свойства химических элементов, а также формы и свойства их соединений находятся в периодической зависимости от зарядов ядер их атомов(современная формулировка периодического законаД.И. Менделеева, открытого в 1869 году). Особенность периодического закона заключается в том, что он не имеет количественного математического выражения в виде какого-либо уравнения. Наглядное отражение периодического закона – периодическая система химических элементов.

Повторяемость свойств элементов (и их соединений) обусловлена периодической повторяемостью электронной конфигурации внешнего квантового слоя атомов элементов, ибо именно эти электроны, обладающие максимальной энергией, в первую очередь определяют свойства элемента и принимают участие в образовании химической связи, а значит, и определяют свойства соединений.

В соответствии с этим законом химические элементы организованы и приведены в систему – периодическую систему элементов, наглядным изображением которой является периодическая таблица.

Структура периодической системы химических элементов. Элементы в периодической системе имеют порядковый номер, который равен заряду ядра атома, и разбиты попериодам и группам. Элементы одного периода имеют одинаковое количество атомных слоев в электронной оболочке атомов: с ростом заряда их ядер закономерно меняется конфигурация внешнего атомного слоя. Это определяет закономерное изменение и разнотипность свойств элементов в пределах одного периода.

Элементы одной группы (подгруппы) сохраняют подобие конфигурации внешнего квантового слоя атомов, что должно определять однотипность их свойств. С ростом заряда ядра атома здесь увеличивается число атомных слоев: влияние ядра на электроны внешнего квантового слоя “экранируется” различным количеством внутренних слоев, что вызывает закономерное усиление или ослабление однотипных свойств элементов в пределах одной группы.

Свойства элементов передаются понятиями: металл, неметалл, благородный (инертный) газ. Благородные газы характеризуются химической инертностью, металлы – способностью (только) отдавать электроны, неметаллы – (прежде всего) принимать электроны. Различают s-, p-, d- и f-элементы в зависимости от типа подуровня, который последним в этих атомах заполняется электронами.

Номер каждого периода (всего их в данный момент 7) указывает на количество атомных слоев и соответствует номеру внешнего квантового слоя. Периоды с первого по третий называют малыми, остальные – большими.

В пределах периода увеличение количества внешних электронов и увеличение силы их притяжения к ядру, наблюдающиеся с ростом заряда ядра, обуславливают ослабление металлических и возрастание неметаллических свойств. Так, каждый период (кроме 1-го) начинается очень активным (щелочным) металлом, затем у элементов металлические свойства ослабевают, а неметаллические постепенно усиливаются, достигая максимальной активности у галогена. Завершается период благородным газом. При этом свойства оксидов (и гидроксидов) элементов также меняются закономерно – от ярко выраженных основных через амфотерные к постепенно нарастающим кислотным свойствам.

В больших периодах изменение свойств элементов от активного металла к активному неметаллу происходит не так плавно. Это связано с появлением в них d и f-элементов, в которых идет последовательное заполнение d и f-орбиталей предшествующих атомных слоев при сохранении, за небольшими исключениями, постоянного числа электронов на внешнем s-подуровне, что определяет, во-первых, металлические, а во-вторых, близкие свойства всех d и f-элементов.

Группы периодической системы (всего 8) состоят из двух подгрупп: главнойипобочной. Главные подгруппы образованы s- или р-элементами, побочные - d-элементами (f-элементы вынесены за рамки табличной сетки). Номер каждой группы численно равен количеству электронов на внешнем квантовом слое атомов элементов главных подгрупп. Так как электроны внешнего квантового слоя отвечают за образование химической связи, номер группы указывает, как правило, на высшуювалентную возможностьэлемента.

Подобие внешних электронных конфигураций атомов элементов определяет, таким образом, и подобие форм их соединений (например, SiO2 и CO2), меняющихся для элементов одного периода (например, Na2O, MgO, Al2O3, SiO2, P2O5, SO3, Cl2O7), а также однотипность свойств элементов в пределах одной группы.

По группе (подгруппе) рост атомного радиуса, наблюдающийся с увеличением заряда ядра, доминирует над увеличением силы притяжения внешних слоев к ядру, что обуславливает усиление металлических (и ослабление неметаллических) свойств элементов. Усиление металлических свойств с ростом заряда ядра атома является общей тенденцией для элементов главных подгрупп периодической системы, которая может приводить и к изменению типа свойств – с неметаллических на металлические в пределах группы. При этом сохраняется тенденция изменения свойств их соединений:

кислотные ® амфотерные ® основные.

 

Основные свойства атомов.

Радиус атома (r, нм). Атом не имеет строгих границ вследствие волновой природы электронов. За радиус свободного атома (орбитальный радиус) принимают теоретически рассчитанное расстояние от центра ядра до максимума электронной плотности внешнего квантового слоя.

При экспериментальном изучении строения молекул получают информацию, на основании которой определяют радиус связанного атома (эффективный радиус).

С ростом заряда ядра радиусы атомов в периоде слева направо, в общем ,уменьшаются (из-за возрастающей силы притяжения внешних электронов к ядру), в группе (подгруппе) сверху вниз возрастают (из-за увеличения количества электронных слоев).

Энергия ионизации(+DHионизации, кДж/моль) – энергия, необходимая для отрыва электрона от свободного атома. Изменяется обратно пропорционально радиусу: по периоду имеет тенденцию увеличиваться слева направо, по группе сверху вниз - уменьшается.

Сродство к электрону (энергия сродства к электрону, ±DHсродства, кДж/моль) – энергия, которая выделяется (отрицательное значение величины) или поглощается (положительное значение) при присоединении электрона к свободному атому. Эта величина имеет тенденцию увеличиваться слева направо по периоду и снизу вверх по группе.

Электроотрицательность (ЭО, кДж/моль) – мера способности атома элемента в соединении удерживать электронную пару, за счет которой образуется связь. Электроотрицательность определяется по уравнению:

ЭО = DHионизации + DHсродства.

Электроотрицательность по периоду увеличивается слева направо, по группе сверху вниз уменьшается. Металлы менее электроотрицательны по сравнению с неметаллами. Электроотрицательность элемента может быть определена различными способами, однако, наиболее распространен метод Л. Полинга, которым было введено понятие относительной электроотрицательности (ОЭО). За единицу электроотрицательности принята ЭО лития, по сравнению с которой определяют электроотрицательность остальных элементов (см. таблицу).

Относительная электроотрицательность используется для характеристики полярности связи, смещения электронной плотности и определения типа химической связи.

– Конец работы –

Эта тема принадлежит разделу:

Химия. Конспект лекций

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ... Химия Конспект лекций для первокурсника...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: СИСТЕМА ЭЛЕМЕНТОВ Д.И. Менделеева

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ПЕНЗА ИИЦ ПГУ 2004
УДК 54 Х46   Рецензент: кандидат технических наук, профессор кафедры «Химическое машиностроение и электрохимическое производство»

Nbsp;   ЛЕКЦИЯ 1. Теория строения атома
Общие сведения о структуре атома. Атом – сложная микросистема, состоящая из множества микрочастиц, подчиняющихся законам микромира. С точки зрения химии, атом – на

Основные положения квантовой механики.
В 1900 г Макс Планк предположил, что поглощение либо испускание энергии может осуществляться строго определенными дискретными порциями – квантами: Е = hν, гд

Квантовые числа.
1. Главное квантовое число n (n = от 1 до ¥ ) определяет энергию электрона (ē) на уровне в атоме, Е = –A/n2 и радиус наибольшей вероятности его нахождения r

Правила заполнения электронами уровней и подуровней.
Принцип Паули: «в атоме не может быть двух электронов в одинаковых квантовых состояниях». Из этого вытекает, что на s подуровне может располагаться только два электрона,

Относительная электроотрицательность элементов I–IV периодов
(по Полингу)   I II III IV V VI VII VIII

Межмолекулярное взаимодействие
  Лишь немногие элементы (благородные газы) находятся в обычных условиях в состоянии одноатомного газа. Атомы остальных – входят в состав молекул или кристаллических решеток. Причина

Nbsp;   Лекция 4. Элементы химической термодинамики
Основные понятия и величины.Химическая термодинамика – наука, изучающая переходы энергии из одной формы в другую при химических реакциях и устанавливающая направление и

Nbsp;   Лекция 5. Химическое равновесие
  Обратимые реакции не доходят до конца и заканчиваются установлением химического равновесия. Состояние равновесия наиболее устойчиво, и всякое отклонение от него требует

Nbsp;   Лекция 6. Основы химической кинетики
  Раздел химии, в котором изучаются скорости и механизмы химических реакций, называется химической кинетикой. Рассмотрим основные понятия химической кинетики. Система

Лекция 7. Растворы
Раствором называется гомогенная система (твердая, жидкая или газообразная), состоящая из двух или более компонентов. То вещество, которого больше, называют растворителем.

Лекция 8. Растворы электролитов
  По способности проводить электрический ток в водном растворе или в расплаве вещества делятся на электролиты и неэлектролиты. Электролитами называются вещества, раст

Nbsp;   Лекция 9. Химические реакции. Окислительно-восстановительные реакции
Химическая реакция – взаимодействие реальных частиц (молекул, ионов, атомов), которое приводит к изменению их физико-химических свойств без изменения природы химических элемен

Электродный потенциал
Возникновение электродного потенциала металла.Электроны в металле занимают энергетические уровни, образующие зоны. Эти зоны расположены ниже уровня энергии свободного электрона. Ес

Лекция 11. Химические источники тока
Электрохимия –естественнонаучная дисциплина, котораяизучает физико-химические свойства ионных растворов и расплавов, а также явления, которые протекают на границе раздела фаз с уча

Nbsp;   Лекция 12. Электролиз
Электролизом называются процессы окисления и восстановления веществ, происходящие на поверхности электродов под действием электрического тока. При электролизе происходит превр

Nbsp;   Лекция 13. Коррозия металлов
Коррозия (разъедание, разрушение) – это самопроизвольный процесс разрушения металлического изделия в результате его взаимодействия с веществами окружающей среды

Nbsp;   Лекция 15. Общие химические свойства металлов
С химической точки зрения металл – это элемент, который во всех соединениях проявляет положительную степень окисления.Из известных в настоящее время 109 элементов 86 являются

Лекция 17. ДИСПЕРСНЫе СИСТЕМы
  Коллоидное состояние характеризуется определенной дисперсностью (раздробленностью) вещества. Вещество в этом состоянии диспергировано до очень малых частиц или пронизано тончайшими

ПОВЕРХНОСТНЫЕ ЯВЛЕНИЯ
  На границе раздела фаз в поверхностном слое существует избыток свободной энергии. Это связано с тем, что на границе раздела с газом, силы межмолекулярного взаимодействия с жидкой фа

Дополнительная
5. Электрохимия : учеб. пособие / Э. Г. Яковлева, Т. К. Семченко [и др.]. – Пенза : Изд-во Пенз. гос. ун-та, 2000. 6. Общие химические и физические свойства металлов : учеб. пособие /

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги