рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Хроматографічні методи аналізу

Хроматографічні методи аналізу - раздел Химия, Аналітична хімія Загальні положення. РІВНОВАГИ   У Таких Процесах Розділення Компонентів, Як Екстракція, У Вип...

 

У таких процесах розділення компонентів, як екстракція, у випадках, коли коефіцієнти розподілу між фазами для різних компонентів мало відрізняються один від одного, відокремити їх у одну ступінь не вдається. Щоб повторити розподіл багато разів, вдаються до динамічних методів – хроматографії. У хроматографічному процесі 2 фази – нерухома й рухома (що рухається відносно першої). Поверхня розподілу (межа) між цими фазами досить велика, що забезпечує інтенсивний перерозподіл речовин, які ми розділяємо, між фазами. Просуваючись, рухома фаза багато разів обмінюється з нерухомою цими речовинами, дозволяючи ефективно їх розділяти навіть при близьких коефіцієнтах розподілу.

Хроматографію винайшов ботанік М. С. Цвєт, що у 1901 р. опублікував роботу про відокремлення забарвлених компонентів хлорофілу. Хроматографічні процеси широко застосовують як у аналітичній хімії, так і у препаративному варіанті – щоб здобути продукти відокремлення.

Методи хроматографії класифікують за різними ознаками:

1) За фізичною природою нерухомої та рухомої фаз – на рідинну (рухома фаза є рідкою) й газову хроматографію. У свою чергу рідинну хроматографію розділяють залежно від стану нерухомої фази на твердо-рідинну (нерухома фаза тверда) та рідинно-рідинну (нерухома фаза рідка). Рідинно-рідинну хроматографію часто називають розподільчою хроматографією. Газову хроматографію розділяють на газоадсорбційну (нерухома фаза тверда) та газорідинну або газорозподільчу (нерухома фаза рідка).

2) За механізмом сорбції – на молекулярну й хемосорбційну. У молекулярній нерухома фаза та компоненти, що розділяють, взаємодіють за силами Ван-дер-Ваальса. До хемосорбційної відносять іонообмінну, осадову, лігандообмінну, окисно-відновну. Сорбція тут спричиняється відповідними хімічними реакціями.

3) За засобом хроматографування на фронтальну (аналізована суміш безперервно пропускають через нерухому фазу, й компоненти починають виходити з хроматографічної колонки у порядку збільшення їх здатності до сорбції); проявну, або елюєнтну (де, увівши порцію суміші, через нерухому фазу надалі пропускають тільки рухому, вже без аналізованих компонентів); витіснювальну (де, щоб десорбувати компоненти, надалі пропускають рухому фазу, до якої додано витіснювач – речовину, що здатна сильно сорбуватись, вивільняючи аналізовані компоненти).

4) За формою нерухомої фази – на колоночну (нерухому фазу вміщують у колонку) та площинну (нерухома фаза – смуга паперу або тонкий шар сорбенту, що нанесений на скляну або металеву пластинку).

У сучасних приладах із колоночної елюєнтної хроматографії на виході з колонки вміщують детектор. Він дає сигнал, що залежить від концентрації компонентів, що визначають. На сигнал мають впливати всі компоненти. Селективність детектора відносно окремих компонентів не має особливого значення, оскільки селективність аналізу забезпечується розділенням на колонці. Сигнали детекторів забезпечують теплопровідність, електропровідність, поглинання випромінювань, теплота згоряння і т. ін.

В ідеалі хотілося б, щоб у елюєнтній хроматографії окремі компоненти виходили з колонки як дуже вузькі зони. У дійсності зони розмиваються і компонент утворює так званий хроматографічний пік – максимум концентрації (і відповідного сигналу детектора), в околі якого сигнал поступово сподає. Розмивання у максимумі концентрації спричиняється дифузією компонента як у напрямі руху розчинника, так і у перпендикулярному напрямі. Відіграє роль також і те, що рівновага процесів сорбції-десорбції встановлюється не миттєво, а потребує певного часу. Здатність колонки до утворення чіткого максимуму сигналу на її виході описують у термінах моделі теоретичних тарілок. Цю величину використовують, щоб визначити ефективність хроматографічного процесу, щоб порівнювати різні конструкції колонок, вибір рухомої та нерухомої фаз у проходженні (і розмиванні) зони, що відповідають тому чи іншому реагентові.

Вводячи величину «число теоретичних тарілок», що характеризує якість розділення, розміри піку, тощо, використали модель й термінологію процесу розділення, що був відомий раніше за хроматографію. Це процес ректифікації – ретельного відокремлення компонентів суміші летких компонентів через їх дистиляцію (переганяння). Одноразова дистиляція не дає бажаного розділення і потрібні повторні процеси. Їх можна організувати у ректифікаційній колоні, де випари суміші компонентів, рухаючись уздовж колони, багаторазово конденсуються й знову випаровуються. Поступово випари все більше збагачуються більш летким компонентом (відповідно, конденсат – менш летким), поки не досягнуто бажаної якості розділення. Деякі конструкції колон містять так звані «тарілки», у яких міститься конденсат, через який пропускають випари, щоб досягти рівноваги. Чергова порція випарів, збагачена леткішим компонентом, піднімається з попередньої тарілки, що розташована нижче, у наступну, верхню тарілку. Надлишок конденсату, збагачений менш летким компонентом, зливається із верхньої тарілки у нижню (а із першої тарілки – назад, у «перегінний куб»). У теоретичній моделі обидві фази у тарілці вважають за повністю перемішані. Якість розділення визначається числом тарілок – чим їх більше, тим більше число послідовних дистиляцій імітує колона. Звичайно, що у хроматографічному обладнанні таких «фізичних» тарілок не побачиш, тому у теоретичних моделях «тарілки» назвали «теоретичними».

Пов’язуючи число тарілок із формою хроматограми, використовують модель розмивання піку як випадкового процесу, що відповідає розподілові Гаусса (або так званому нормальному розподілові). Ми маємо з цим розподілом ще зустрітися, вивчаючи розсіяння повторних вимірювань у задачах кількісного аналізу.

На рисунку зображено пік сигналу на виході з колонки, форма якого − так звана крива Гаусса. На осі абсцис може бути час, у який реєструють сигнал, або (якщо розглядати пік, розподілений у колонці) відстань від початку колонки у певний момент часу. На осі ординат – концентрація компоненту в рухомій фазі (або сигнал детектора, h, пропорційний концентрації. Як ординату відносну величину, h / hmax, де у знаменнику – максимальне значення сигналу. Рівняння Гауссова піка –

h = hmax × exp {– [(ttR) / s ]2 / 2} = [А / (s )] × exp {– [(ttR) / s ]2 / 2},

де tR – час, що відповідає максимумові сигналу (величині hmax), А – загальна площа під графіком, s − параметр розподілу, що зветься середнім квадратичним відхиленням. Ця функція симетрична відносно ординати, що відповідає tR . За властивостями розподілу Гаусса, дотичні до функції проходять на відстані ± s від tR, й перетинають вісь абсцис на відстані ± »2 s від tR. Визначаючи s за даними експерименту, іноді вимірюють ширину кривої (різницю між значеннями t) для двох симетричних точок із сигналом h / hmax = 0,5. Ця відстань дорівнює » 2,345 s. За моделлю число теоретичних тарілок дорівнює

n = (tR / s)2 » 5,54 (tR / w1/2)2 » 16 (tR / w)2,

де w1/2 – згадана вище ширина кривої для точок із h / hmax = 0,5, w – відстань між точками перетину дотичних із віссю абсцис, значення 5,54 » (2,345)2, 16 = (2 × 2)2.

Розрізняти зони від двох компонентів А та В можна, якщо відстань між ними більше за ширину обох зон. Щоб кількісно оцінити здатність розрізнити ці зони, уводять коефіцієнт розділення,

R s = (t R Bt R А) / (s A + s B) = 1,18 (t R Bt R А) / (w 1/2 A + w 1/2 B),

де останній індекс у величинах вказує, до якого компонента належить величина, а 1,18 = 2,345 / 2 – множник, що переводить w 1/2 у s. Тут вважається, що t R А < t R B (першим рухається компонент А).

Тонкошарова хроматографія (ТШХ).ТШХ запропонована харківськими вченими М. А. Ізмайловим та М. С. Шрайбер, що у 1938 р. опублікували роботу з розділення алкалоїдів на пластинці з оксидом алюмінію. У ТШХ нерухому фазу наносять тонким шаром на скляну, металічну або пластмасову пластинку. Близько від краю пластинки, на так звану стартову лінію, наносять невелику кількість проби аналізованого розчину край пластинки занурюють у розчинник, що стає носієм для рухомої фази. Дією капілярних сил розчинник рухається уздовж шару сорбенту й із різною швидкістю переносить компоненти суміші, що спричиняє їх розділення у просторі.

Існують варіанти ТШХ, де рухому фазу пропускають (через гніт) від середини пластинки до її країв, кільцями. Компоненти, що розділяють, рухаються за радіусами.

Розроблено також двовимірну ТШХ, де, пропустивши рухому фазу в одному напрямі, пластинку підсушують й пропускають рухому фазу іншого складу у перпендикулярному напрямі.

Основні характеристики ТШХ. На рисунку, поданому нижче, подано схему, що вказує розташування плям від різних компонентів на ТШХ. Він відповідає процесу градуювання, коли краплі зразків для двох розчинів чистих компонентів було нанесено на стартову лінію a – a поруч одна від одної, але із зміщенням, щоб вони не змішувались, коли речовину переносить рухома фаза. Фронт її руху позначено лінією b‑b. Фронт перемістився від стартової лінії на відстань xf, середина плями від 1‑ї речовини – на відстань x1, а середина плями від 2‑ї речовини – на відстань x2. Рухаючись, плями розпливаються. Довжину плями від 1‑ї речовини на рисунку позначено як lн‑в, де індекси «н» та «в» відповідають нижній та верхній межі плями (так, відстань, яку пройшла нижню межа плями від 1‑ї речовини на рисунку позначено як xн).

Відношення відстані від стартової лінії до середини плями речовини, до відстані, що проходить фронт рухомої фази, це величина Rf, характерна для речовини та складу рухомої та нерухомої фази. Для 1‑ї та 2‑ї речовин маємо

Rf1 = x1 / xf, Rf2 = x2 / xf .

У теоретичній моделі процесу величини Rf є постійними, якщо постійним лишаються коефіцієнти розподілу, а отже і частка часу, що проводить молекула речовини, що адсорбується (адсорбату) у рухомій фазі. Отже, слід виміряти величини Rf для стандартних зразків речовин, і використати їх, розшифровуючи хроматограму для аналізованої суміші.

За значеннями Rf ідентифікуємо речовини, здійснюючи якісний аналіз багатьох неогрганічних та, особливо, органічних аналітів.

Якщо аналіт незабарвлений, то, висушивши пластинку з хроматограмою, діють на неї відповідними реагентами, що дають інтенсивно забарвлені продукти із аналітами – проявляють хроматограму.

ТШХ приваблює низькою трудомісткістю, простотою та доступністю обладнання, універсальністю у застосуванні до різноманітних складних об’єктів. Здійснюючи точні виміри, можна оцінити ефективність процесу через число теоретичних тарілок та величину R s.

Порівнюючи площі плям (чи їх інтенсивність) для об’єкта та стандартів, здійснюють і кількісний аналіз. Із розвитком комп’ютерної техніки для кількісного аналізу у ТШХ розроблено відповідне програмне забезпечення. Хроматограму сканують, використовуючи серійні кольорові сканери з їх програмним забезпеченням, що дає 3 складових сприйняття кольору (відповідно трикольоровому зору й пов’язаних з ним конструкціям дисплеїв, принтерів, взагалі не тільки комп’ютерної, а й поліграфічної техніки). Спеціальна комп’ютерна програма розшифровує зображення від сканера, виводячи з нього 3 складові залежності інтенсивності кольору від відстані між досліджуваною точкою хроматограми і стартовою лінією. Ці функції можна виводити як наочні графіки (на екран чи на принтер), інтегрувати, порівнювати одну з одною (наприклад, стандартного зразка та об’єкта), перераховувати у концентрації. Комп’ютерне обладнання досить поширене, доступне і недороге (порівняно з обладнанням для хроматографічного аналізу іншими методами). Тому вказаний напрям є перспективним.

Як і в інших видах хроматографії, на ефективність розділення впливає перш за все вибір нерухомої та рухомої фази. Досить зручно використовувати пластинки з нерухомою фазою, що випускає промисловість. У нас визнання здобули пластинки марки «Сілуфол» на основі силікагелю, що випускали у Чехословаччині.

Найбільш широке джерело оптимізації конкретної методики – вибір складу розчинника у рухомій фазі. Найчастіше використовують суміші органічних розчинників. Більш полярний компонент розчинника сприяє більшій сольватації полярних аналітів і зменшенню відповідних Rf. Вибір розчинника здійснюємо за порівняльними таблицями їх властивостей.

Умови ТШХ. Щоб сподіватись, що значення Rf у дослідах постійне, і цю величину можна використовувати як надійну характеристику у аналізі за ТШХ, слід підтримувати однакові умови як для стандартної речовини, так і для аналізованого об’єкта:

1) Зразки й об’єкт готують, використовуючи однаковий розчинник. Щоб зменшити витрати розчинника протягом руху фронту хроматограми й (у типовому випадку використання суміші розчинників) забезпечити постійний склад розчинника, процес здійснюють у спеціальній камері, атмосферу якої попередньо насичують випарами розчинника.

2) Концентрації аналізованих речовин та стандартів мають бути близькими, щоб залежності інтенсивності плями від концентрації були близькими до лінійних.

3) На пластинку наносять однакові об’єми розчинів об’єкта та стандартів. Площа плям на стартовій лінії має бути однаковою. Розчини наносять мікрокраплями й дають розчинникові випаритись після нанесення кожної краплі.

4) Розчини як об’єкта, так і стандартів готують, використовуючи той самий розчинник.

5) Зменшуючи похибки від коливання властивостей нерухомої фази, бажано розчини як об’єкта, так і стандартів наносити поруч.

Лабораторна робота № 6.1. розділення нейтральних хелатів (комплексів металівіз органічним лігандом) методом ТШХ.

Мета роботи: ознайомитись із прийомами ТШХ на прикладі розділення 1‑(2‑піридилазо)‑2‑нафтола (ПАН) та його комплексів із Cu (II), Ni (II), Co (II) та Fe (II).

1. Реактиви й обладнання

ПАН, спиртовий розчин із масовою часткою w(ПАН) = 0,01 %.

Розчини з с(Ме (ІІ)) = 1 × 10‑4 моль/л солей Cu (II), Ni (II), Co (II) та Fe (II).

Буферний розчин із рН = 3,5-4.

Хлороформ; ацетон (або етанол, толуол).

Ділильні лійки, піпетки місткістю 10 мл та 1 мл (останні – з поділками), вимірювальні циліндри місткістю » 10 мл, хроматографічні пластинки, капіляри, камера для хроматографування (звичайно хімічна склянка з кришкою з листового скла).

2. Одержання екстрактів комплексів

У ділильну лійку місткістю » 100 мл уведіть піпеткою 10 мл розчину солі відповідного металу, додайте піпеткою 0,5 мл спиртового розчину ПАН та циліндром 10 мл буферного розчину. Через 5 хв вимірним циліндром додайте 10 мл хлороформу й екстрагуйте утворені комплекси, ретельно перемішавши вміст лійки та відокремивши органічну фазу у пробірку.

3. Хроматографування

На хроматографічній пластинці, відступивши від її нижнього боку на 2 см, олівцем (за лінійкою) проведіть стартову лінію. На цю лінію, на відстані 0,5-1 см одне від одного, нанесіть відібрані у капіляри краплі хлороформних екстрактів комплексів та екстракту об’єкта розчином ПАН’у. Плями від крапель підсушіть, опустіть нижній край хроматографічної пластинки в розчинник – елюент (суміш ацетон – хлороформ у об’ємному відношенні 1:10, або краще етанол ‑толуол у об’ємному відношенні 3:7), що налитий тонким шаром у камеру для хроматографування, й зразу закривають камеру кришкою.

Камеру з сумішшю розчинників готують заздалегідь. Щоб уникнути зміни концентрацій складових цієї суміші на хроматографічній пластинці, спричиненій випаровуванням елюенту, повітря у камері попередньо насичують цими випарами. Зазвичай у елюент занурюють аркушик фільтрувального паперу, що збільшує поверхню випаровування й цим пришвидшує встановлення рівноваги між рідиною та її випарами. Камеру постійно закривають кришкою, знімаючи останню лише на мить, щоб внести пластинку у камеру.

Коли межа між мокрою та сухою частиною пластинки (так званий фронт) досягне відстані » 1 см від верхнього краю пластинки, процес припиніть, вийнявши пластинку з камери. Помітьте місце цієї межі й висушіть пластинку. Виміряйте лінійкою, на якій відстані від стартової лінії розташовані плями від компонентів, що розділені хроматографічно, і на якій відстані розташовано фронт елюенту. Порівнюючи значення Rf для стандартів та компонентів об’єкта, встановіть якісний склад останнього.

Лабораторна робота № 6.2. розділення амінокислот методом ТШХ.

Мета роботи: ознайомитись з прийомами ТШХ на прикладі розділення амінокислот – аланіна, гістидина, глутамінової кислоти.

1. Реактиви й обладнання

Розчини з масовими концентраціями амінокислот, r = 10‑3 г /л.

Розчин нінгідрину (в етанолі або у суміші розчину оцтової кислоти, із масовою часткою w = 120 г/л, та н‑бутанолу, співвідношення об’ємів розчинників 1:19 ), із масовою часткою нінгідрину w = 0,2 %.

Льодяна оцтова кислота, бутанол.

Ділильні лійки, піпетки місткістю 10 мл та 1 мл (останні – з поділками), вимірювальні циліндри місткістю » 10 мл, хроматографічні пластинки, капіляри, камера для хроматографування (хімічна склянка з кришкою з листового скла).

2. Хроматографування

Методика нанесення проби та стандартних розчинів й хроматографування така ж, як у попередній роботі. Оскільки розчини вихідних речовин є водяними, а швидкість випаровування води порівняно низька, зверніть особливу увагу на висушування крапель вихідних розчинів, що нанесені на стартову лінію. Корисно підігріти вихідні плями у теплому повітрі. Об’єми всіх розчинів дорівнюють 5 мкл. Елюентом є суміш льодяної оцтової кислоти з водою та бутанолом, у об’ємному відношенні 1:1:3. Коли фронт просунеться на » 15 см, процес припиніть, пластинку висушіть при 100-105 оС протягом 15 хв. Плями переведіть у забарвлені, оприскуючи пластинку розчином нінгідрину. Порівнюючи Rf для стандартів та об’єкту, зробіть висновок про якісний склад останнього.

 


– Конец работы –

Эта тема принадлежит разделу:

Аналітична хімія Загальні положення. РІВНОВАГИ

імені В Н Каразіна... Аналітична хімія Загальні положення РІВНОВАГИ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Хроматографічні методи аналізу

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ПРОГРАМА
"АНАЛІТИЧНА ХІМІЯ" для студентів біологічного факультету денної форми навчання     Харків - 2010

АНАЛІТИЧНА ХІМІЯ. ЗАГАЛЬНІ ПОНЯТТЯ І ВИЗНАЧЕННЯ
Аналітична хімія – це наукова дисципліна про методи, засоби й загальну методологію здобуття інформації про якісний i кількісний склад матеріальних об'єктів на основі дослідження хі

Класифікація методів аналізу, що грунтується на кількості речовини аналіту
Метод Маса аналіту, г Об’єм розчину проби, мл Кількість речовини аналіту Макроаналіз 1 – 10

Методи аналітичної хімії
Метод аналізу – універсальний і теоретично обґрунтований спосіб визначення складу об’єкту, це сукупність принципів, на яких базується аналіз без конкретних посилань на об’єкти та компоненти.

ЯКІСНИЙ АНАЛІЗ. ЗАГАЛЬНІ ВІДОМОСТІ
Метою якісного аналізу є виявлення окремих елементів та іонів, що входять до складу речовини. Якісний аналіз здійснюють хімічними, фізико-хімічними фізичними або біологічними методами. Хі

Характерні групи атомів у органічних реагентах
Солетворні групи атомів Комлексотворні групи атомів Карбоксильна ‑ СООН Спиртова або фенольна

Використання органічних реагентів у аналізі
Реагент Формула Об’єкти, що визначають Якісний аналіз Кількісний аналіз Алізарин

ЗАКОН ДІЇ МАС. АЛГЕБРА ХІМІЧНИХ РЕАКЦІЙ
Хімічна рівновага. Зворотні реакції проходять як у прямому, так і у зворотному напрямах. Рівновага встановлюється, якщо ці зміни взаємокомпенсуються. Рівноважний склад – сук

Алгебраїчний підхід при записі рівнянь хімічних реакцій
Розглянемо реакцію загального вигляду 0 D aj Aj, (12) де S – символ суми, j – н

Позначення констант рівноваг
Реакції (загальний вигляд та приклади) Позначення Примітки 1. Константи стійкості комплексів

Лінійні комбінації реакцій
Ми вже мали змогу звернути увагу, що рівняння приєднання кількох протонів до багатозарядного аніону (або кількох лігандів до іону-комплексоутворювача) характеризуються загальною константою, яка дор

Ускладнення у визначенні областей переважання
Якщо послідовність усіх N ступінчатих констант спадна, K1 > K2 > . . . > KN, то у всіх N+1 реагентів і

Метод матеріального балансу при розрахунках рівноважного складу розчинів
При розчиненні у воді сполук – сильних електролітів (які повністю розпадаються на іони) – за умови іони, що утворюються у розчині не вступають в інші реакції, рівноважний склад частково можна описа

Приклади обчислень рівноважних концентрацій розчинів за схемою Комаря М. П.
Розглянемо приклад 2, який наведено в розділі «Метод матеріального балансу» Розв’язання. При розчиненні солі HCOOAg у воді – у розчині будуть такі

Буферні розчини
  Якщо для розчину характерна властивість зберігати значення будь-якої рівноважної концентрації (активності) при його розведенні або додаванні до нього інших реактивів, то такий розчи

Розрахунки рН буферних розчинів.
Розглянемо кілька прикладів. Приклад 1. Визначити рН буферного розчину, який приготували змішуванням розчинів: 55 мл оцтової килоти (с0(HAc) = 0,15 моль/

Приготування буферних розчинів із заданим рН
Буферний розчин із заданим рН з відомою парою буферуючих компонентів можна приготувати трьома способами: - змішуючи в необхідному співвідношенні кількості речовини; розчини слабкої кислоти

Взаємодія катіонів із деякими реагентами
Іон Реагент SO42- Cl- OH- NH3.

Pеaкцiї катіонів l-ї аналiтичної групи
  Реактив Ag+ Hg22+ Pb2+ HCl (розведе-на), хлориди

Мікрокристалоскопічна реакція на кальцій
Розведена H2SO4 та розчини сульфату утворюють із катіонами Са2+ голчасті кристали гіпсу, CaSO4 ×2 Н2О. На предметне скло нанесі

Peaкції катіонів 2-ї aнaлiтичної групи
  Реактив Ва2+ Sr2+ Ca2+ Н2SO4 та сульф

Алюміній
4.1.1. Осадження Al(OH)3(s), його амфотерність. У пробірку налийте 3 краплі розчину Al(NO3)3 й додайте 3 краплі розчину амі

Реакції катіонів 4-ї аналітичної групи
  Реактив Fe2+ Fe3+ Bi3+ Mn2+ Sb(III) та Sb(V)

А група катioнів
Катіони 5-ї групи Cu2+, Cd2+, Ni2+, Co2+, Mg2+, Нg2+ у лужному середовищі в присутності Н2О2 (в умовах відокр

Реакції катіонів 6-ї аналітичної групи
  Реактив K+ Na+ NH4+ NaHC4O4

Проби на присутність аніонів‑відновників.
а) До 3-4 крапель розчину додайте 1-2 краплі розчину з c(H2SO4) = 1 моль/л, 1-2 краплі розчину I2 у KI та 6-8 крапель розчину крохмалю. Якщо розчин знебарвлю

Систематичний якісний аналіз аніонів
88) Які особливості якісного аналізу аніонів порівняно з аналізом катіонів? 89) Назвіть групові реагенти і склад груп систематичного аналізу аніонів. 90) Що таке «водяна витяжка»

Модуль 1.
Приклади розв’язання задач 1. Запишіть значення констант наступних рівноваг: 1)1) H2AsO4- D HAsO42- + H+

Теорія похибок і статистична обробка результатів вимірювань
При проведенні експериментальних досліджень вимірювання повторюють кілька (n) разів – отримують паралельні значення вимірюваного параметру: x1. x2 …xn

Теоретичні значення Q – критерію. при різних довірчих імовірностях Р
  n Q( n. P ) P = 0.90 p = 0.95 p = 0.99 0

Таблиця 2
Значення критерію грубої похибки β n β α = 0.05 α = 0.

Значення t-критерію Стьюдента
f p 0.90 0.95 0.99 0.995 0.999 6.3130

Таблиця 4
значення критерію фішера, F (f1, f2, P = 0,95 ).

Терези і принцип зважування
Масу речовини m вимірюють, зважуючи речовину. Вага Р є про­пор­цій­ною масі P = mg, де g – прискорення сили тяжіння. Зважуючи, силу притягування порівнюють із в

Конструкція аналітичних терезів
У сучасні аналітичні терези вмонтовано інтерфейси, що спо­лу­ча­ють устрої. У них повністю автоматичне внутрішнє градуювання з урахуванням температури, пристрої для тарування у всьому діапазоні зва

Порядок зважування на терезах типу ВЛР-200.
Увага! Вмикати терези слід при закритих бокових шторках. Ставити об’єкт зважування на ліву шальку, а гирі – на праву. Змінювати навантаження можна тільки при вимкнутих

Умови висушування деяких кристалогідратів
Кристалогідрат Умови висушування Над безводяною сіллю Маса водя­ної пари (мг / л) BaCl2.2H2

Загальні відомості
У та­ких ме­то­дах хі­міч­но­го ана­лі­зу, як гра­ві­мет­рія та так зва­ні фі­зи­ко-хі­міч­ні ме­то­ди, ви­ко­рис­то­ву­ють гра­ду­йо­воч­ну за­леж­ність між скла­дом об­’єк­та та фі­зич­ною влас­т

Мірний посуд та робота з ним
Який мірний посуд вживають у хімічних аналізах? Одиниці об’єму.Одиницею об’єму в інтернаціональній си­сте­мі одиниць (СІ) є кубічн

Перевірка місткості посуду
Загальні засади. Згідно ДСТУ, допускають такі відхилення від номінальної місткості (± см3)   для колб  

Таблиця 3
Ефективна густина води, r*, г/дм3, що використовується у перевірці мірного посуду, та сума поправок (А + В + С) , г/дм3 t,

Поправки для об’ємів (в см3), що виміряні мірним посудом (каліброваним для температури 20 °С), якщо ним користуються при різних температурах
Ви­мі­ря­ний об’­єм, см3 Температура, оС

Кислотно-основне титрування
Методики грунтуються на кислотно-основних пе­ре­тво­рен­нях – пе­ре­да­чі іону водню від аналіту до титранту або навпаки. Тит­рантами зазвичай є силь­ні кислоти або сильні ос­но­ви (луги), ана­літа

Реактиви й обладнання
Хлороводнева кислота, стандартизований розчин c(HCl) = 0,1 моль/л; Бромкрезоловий зелений, розчин із масовою часткою w » 0,1 % у водно-етанольній суміші (8:2 за об'ємом); Б

Комплексонометричне титрування
Реакції комплексоутворення здавна є основою деяких тит­ри­мет­рич­них визначень. Так, іони га­ло­ге­ні­дів визначають тит­ру­ван­ням комплексоутворювачем – іонами Hg2+ (

Окислювально-відновлювальне титрування
В окислювально-відновлювальному титруванні або ана­літ A є від­новлювачем (і у титруванні окислюється), а тит­ран­т T – окис­лювачем (і у титруванні відновлюється), або навпаки, ана­літ A є окислюв

А. Стандартизація за наважками кристалічного іоду
2А. Реактиви й обладнання: Тіосульфат натрію, розчин c(Na2S2O3.5H2O) » 0,1 моль/л у сві­жо­про­кип’­я­че­ній дистильова

Б. Стандартизація за наважками дихромату калію
2Б. Реактиви й обладнання: Тіосульфат натрію, розчин c(Na2S2O3.5H2O) » 0,1 моль/л, як у пункті 2А; Дихромат ка

Кислотно-основне титрування
Приклади розв’язання задач Приклад 1. Наважку бури (Na2B4O7·10H2O) масою 0,3221 г розчинили у воді. На титрування одержаного ро

Комплексонометричне титрування
Приклади розв’язання задач Приклад 1. Наважку сплаву, що містить цинк та мідь, масою 0,8512 г розчинено й об’єм розчину доведено до 100 мл. При визначенні сумарної кількос

ЕЛЕКТРОХІМІЧНІ МЕТОДИ АНАЛІЗУ
В основі електрохімічних методів лежать процеси на електродах або в міжелектродному просторі при виникненні потенціалу або при пропусканні електричного струму через розчин. Електродний процес – гет

Теоретичні основи потенціометрії
Для вирішення аналітичної задачі потенціометричні вимірювання можна проводити двома способами. Перший спосіб – пряма потенціометрія, полягає в тому, що в досліджуваний розчин занурюють необхідний і

EACх= Eх= EAB(lACх / lAB).
Із цих рівнянь можна отримати, що Eх = Eст(lACх / lACст), де lACхтаlACст –

Результати вимірювань оформлюємо у таблицю
  № розчину с(NaF), моль/л lgс(F-) е.р.с., мВ   &nb

Шпателі, скляні палички.
3. Хід роботи Наважку зразка (mo), що містить близько 0,1 г заліза, розчиня­ють при нагріванні у 20 мл концентрованої хлорводневої кислоти. Якщо розчинення неп

Атомна спектроскопія
Атомна спектроскопія– фізичний метод, що грунтується на залежності між складом речовини та випромінюванням чи поглинанням світла у певних умовах. Емісійний спектральний аналіз грун

Атомно-емісійний метод аналізу
Лабораторна робота № 4.1. Визначення калію та натрію в мінеральних водах методом полум'яно-емісійної спектрометрії. Мета роботи: 1. Визначити масов

Спектрофотометрія
Спектрофотометричні методи аналізу базуються на законі Бугера, який виражають рівнянням , де I

Визначення загальної кількості летких фенолів у стічній воді у перерахунку на C6H5OH.
Мета роботи: 1. Ознайомитися з основними етапами методики спектрофотометричного аналізу домішок органічних речовин. 2. Освоїти алгоритм вимірювань на фотометрі. 3. Визначит

Вибрані кінетичні методи аналізу
  У багатьох методах аналізу до стану рівноваги до­водять хі­міч­ні перетворення, за якими аналіт переводять у інші сполуки, що формують вихідний сиг­нал (масу чи об’єм, випромінюванн

Сутнiсть методики
Щоб визначити мiкрокiлькості альдегідiв, використовують ре­ак­цiю окислення п-фенiлендiаміну пероксидом водню, на яку альде­гіди дiють як каталiзатори. Схема механізму реакцiї (за нинiшнiми уявленн

Алгоритм методики
2.1. Прилади й реагенти Фотоелектроколориметр; Секундомiр; Вимiрювальнi колби мiсткiстю 50 мл; Піпетки мiсткiстю 5 мл; Піпетки с подiлками мiсткi

Алгоритм методики
2.1. Прилади та реагенти Фотоелектрокалориметр КФК з мікропроцесором; Вимiрювальнi колби мiсткiстю 50 мл; Пiпетки мiсткiстю 2 мл; Пiпетки з подiлками мiст

Біологічні та біохімічні методи аналізу
Біологічні методи аналізу базуються на тому, що для життєдіяльності; росту, розмноження й взагалі нормального функціонування живих істот необхідне середовище певного хімічного складу. При зміні цьо

Приклади використання біологічних методів для визначення різних сполук
Індикаторний організм Сполука, яку визначають Cmin, P = 0,95 Мікроорганізми мкг/мл

Таблиця 2
Приклади використання ферментів для визначення їх субстратів (I) і інгібіторів (II) Клас ферментів Індикаторна реакція

Неорганічні ліганди
OH‑, гідроксид ‑ іон   H+ lg Kw = { ‑13,997; D H = ‑55,81

Органічні ліганди: аміни
C2H7NO, H2N‑CH2‑CH2‑OH, 2‑аміноетанол H+ lg KH

Органічні ліганди: карбонові кислоти
CH2O2, HCOOН, мурашина кислота; ліганд HCOO‑, форміат-іон H+ lg KH = {

Органічні ліганди: амінокислоти
C2H5NO2, H2N-CH2-COOH, амінооцтова кислота (гліцин); ліганд: H2N-CH2-COO‑, L‑,

Інші органічні ліганди: оксими, тіоли тощо
CH4N2S, тіосечовина H2N-C-NH2 ÷ê S Ag+

Відновні напівреакції
Aglg K(Ag2+ + e‑ Û Ag+) = 32,62 [I=4], Eo = 1,929 B lg K(2 AgO(s) + H2

Індикатори
(а) кислотно-основні індикатори Бромкрезоловий синій, L (синій) ® HL+ (жовтий): lg KH ={ 4,80 [20 о

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги