Решение типовых задач

Задача 1. Вычислить равновесную концентрацию иона меди Cu2+ и степень диссоциации комплексного иона в 0,01 М растворе [Cu(NH3)4]SO4, Кн = 9,3×10-13.

Решение. Запишем уравнение диссоциации комплексного иона:

[Cu(NH3)4]2+ Û Cu2+ + 4NH3

Обозначим равновесную концентрацию иона меди [Cu2+] = х моль/л, тогда равновесные концентрации остальных частиц равны [NH3] = 4x моль/л, [Cu(NH3)] = (0,1 – х) моль/л ≈ 0,1 моль/л, т.к. константа диссоциации комплексного иона достаточно мала, т.е. можно говорить о его малой диссоциации. Запишем выражение для константы нестойкости, проведем соответствующие подстановки и преобразования:

; Кн = ; = 9,3×10-13;

256х5 = 9,3×10-14;

,

получаем [Cu2+] = 8,2×10-4 моль/л.

; α = ; α = = 8,2×10-3; α = 0,82%.

Задача 2.В каком из 0,1 молярных растворов комплексных солей дицианоаргентата (1) калия и хлорида диамминсеребра (1) концентрация ионов серебра больше и во сколько раз?

Решение. Запишем уравнения диссоциации комплексных ионов [Ag(NH3)2]+ и [Ag(CN)2]-:

[Ag(NH3)2]+ Û Ag+ + 2NH3; [Ag(CN)2]- Û Ag+ + 2СN-.

На основании этих равновесий запишем выражения констант нестойкости:

; .

По таблице IV находим величины констант нестойкости: Кн/ = 5,8×10-8, Кн// = 1,4×10-20. Сравнивая константы, т.к. комплексные ионы однотипные, делаем вывод, что концентрация ионов серебра в дицианоаргентате калия меньше, чем в хлориде диамминсеребра.

Для того, чтобы ответить на вопрос «во сколько раз концентрация ионов серебра в одном растворе больше, чем в другом?», можно провести последовательные вычисления концентрации ионов серебра для каждого из комплексных ионов, как в задаче 1.

 

 

Рассмотрим 2-ой путь решения.

Все обозначения и преобразования сделаем, как в задаче 1, обозначив для аммиаката концентрации одним штрихом, а для цианида – двумя штрихами:

; ;

0,1 - х/ ≈ 0,1 и 0,1 - х// ≈ 0,1, т.к. степени диссоциации комплексных ионов малы.

; .

Выразим х/ и х//: ; .

Разделив х/ на х//, получим: = = .

= = = 1,6×104 = 16000 (раз).

Задача 3. Вычислите равновесную концентрацию ионов ртути в 0,1 М растворе K2[HgJ4], содержащем 0,01 М KJ, Кн = 1,48×10-30.

Решение. Запишем уравнение процесса диссоциации комплексного иона [HgJ4]2-:

[HgJ4]2- Û Hg2+ + 4J-

константа нестойкости ионов ртути равна: .

Выражение для концентрации ионов ртути запишется:

(1)

Подставим равновесные концентрации комплексного иона [HgJ4-2] = 0,1 моль/л и ионов иода [J-] = 0,01 моль/л, пренебрегая той малой частью, которая образуется при диссоциации комплексного иона, в выражение (1) и проведем вычисление концентрации ионов ртути в растворе:

[Hg2+] = = 1,48×10-23 (моль/л)

Задача 4. Произойдет ли разрушение комплекса, если к 0,02 М раствору K2[HgJ4] прилить равный объем 0,02 М раствора нитрата свинца?

Решение. Комплексный ион будет разрушаться, если будет выполняться условие [Pb2+] × [J-]2 ≥ ПР (PbJ2). При этом ионы иода будут связываться в осадок, что вызовет смещение равновесия диссоциации комплексного иона вправо до полного его разрушения. Найдем концентрацию [Pb2+] и [HgJ4]-2 в растворе после смешивания. Концентрации уменьшаются в 2 раза и соответственно равны: [Pb2+] = 0,01 моль/л, [HgJ4-2] = 0,01 моль/л. Комплексный ион [HgJ4]-2 диссоциирует по уравнению: [HgJ4]-2 Û Hg2+ + 4J-

константа нестойкости равна: ;

обозначив концентрацию распавшихся комплексных ионов через х моль/л, тогда равновесные концентрации ионов будут равны: [Hg2+] = х моль/л; [J-] = 4х моль/л;

[HgJ42-] = (0,01-х) ≈ 0,01 моль/л, т.к. х << 0,01.

Подставляем значения равновесных концентраций в выражение константы нестойкости и вычисляем х:

= 1,48×10-30; 256х5 = 1,48 × 10-32;

= 1,4×10-7 (моль/л).

Т.к. за х мы обозначили концентрацию продиссоциировавшей части комплексного иона, то [J-] = 4х = 4×1,4×10-7 = 5,6×10-7 (моль/л). Находим произведение концентраций ионов свинца и йода в растворе:

[Pb2+] × [J-]2 = 10-2× (5,6×10-7)2 = 31,4×10-16 = 3,1×10-15.

По таблице II находим произведение растворимости йодида свинца: ПР(PbJ2) = 1,1×10-9. Так как 3,1×10-15 < 1,1×10-9, то осадок не выпадает и комплексный ион не разрушается.

Задача 5. Вычислить растворимость бромида серебра (в моль/л) в 1 М растворе аммиака.

Решение. При растворении бромида серебра в растворе аммиака протекают следующие процессы: AgBr↓ Û Ag+ + Br-

+

2NH3 Û [Ag(NH3)2]+

Суммарное уравнение процесса растворения:

AgBr + 2NH3 Û [Ag (NH3)2]+ + Br.

Для данного процесса запишем константу равновесия:

Умножив числитель и знаменатель на равновесную концентрацию ионов серебра [Ag+], получим после преобразований:

.

Вычислим Кр, взяв из таблиц значения ПР и Кн:

= 0,91×10-5 = 9,1×10-6.

Обозначим равновесную концентрацию ионов брома [Br-] = Р моль/л (т.к. она равна растворимости бромида серебра), тогда [Ag(NH3)2+] = Р моль/л, а равновесная концентрация аммиака 1-2Р ≈ 1, т.к. Р<<1. Подставляем эти значения в выражение константы равновесия: ; ≈ 3×10-3 (моль/л).

Задача 6.Сколько миллилитров 1М раствора аммиака следует взять для полного растворения 0,1 г бромида серебра?

Решение. Растворимость бромида серебра вычисляем, как в задаче 5.

3 × 10-3 моль/л.

Вычислив количество вещества бромида серебра:

= 5,3×10-4 (моль),

рассчитываем объем 1М раствора аммиака:

×103 = 1,77×102 = 177 (мл).

Задача 7. Сколько моль/л аммиака необходимо добавить к 0,02 М раствору нитрата серебра, чтобы понизить равновесную концентрацию ионов серебра до 1×10-7 моль/л?

Решение. Запишем общую схему диссоциации комплексного иона: [Ag (NH3)2]+ Û Ag+ + 2NH3.

Константа нестойкости его запишется: .

По условию концентрация ионов серебра [Ag+] = 1×10-7 моль/л, а исходная концентрация ионов серебра в растворе AgNO3 равна [Ag+]исх. = = 0,02 моль/л. Концентрация ионов серебра, связанных в комплексный ион, и концентрация этого комплексного иона равны:

[Ag (NH3)2+] = [Ag+]исх. - [Ag+] = 2×10-2 - 1×10-7 ≈ 2×10-2 (моль/л).

Находим равновесную концентрацию аммиака:

= 1,08×10-1 (моль/л).

Т.к. часть аммиака расходуется на образование комплекса и равна удвоенной концентрации ионов серебра, то общая концентрация аммиака равна:

[NH3]исх. = [NH3] + 2[Ag+]исх. = 1,08×10-1 + 2×2×10-2 = 1,48×10-1 (моль/л).