рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Донные осадки океана

Работа сделанна в 1996 году

Донные осадки океана - раздел Биология, - 1996 год - Углеродный цикл и изменения климата Донные Осадки Океана. Ежегодно Около Г С Откладывается На Дне Океана, Часть Э...

Донные осадки океана. Ежегодно около г С откладывается на дне океана, часть этих отложений представляет собой органический углерод, а другая часть Органический углерод является основным источником энергии для организмов, обитающих на дне моря, и только малая его часть захороняется в осадках, исключение составляют прибрежные зоны и шельфы. В некоторых ограниченных областях например, в некоторых районах Балтийского моря содержание кислорода в придонных водах может быть очень низким, соответственно уменьшается скорость окисления и значительные количества органического углерода захороняются в осадках.

Области с бескислородными условиями увеличиваются вследствие загрязнения прибрежных вод, и в последние годы, вероятно, количество легко окисляемого органического вещества также увеличилось. Выше лизокнина океанические воды пересыщены по отношению к, уровень лизокнина в Атлантическом океане расположен на глубине 4000 м, а в Тихом - всего лишь на глубине 1000 м. Над лизокнином не происходит сколько-нибудь заметного растворения, в то время как на больших глубинах его растворение приводит к уменьшению выпадения в осадок, а ниже глубины карбонатной компенсации осаждения не происходит совсем. Так как толщина верхнего осадочного слоя, в котором происходит перемешивание осадков организмами, живущими на дне океана биотурбация, составляет примерно 10 см, значительное количество углерода г в форме медленно обменивается с неорганическим углеродом морской воды, главным образом на глубине лизокнина.

Содержание изотопа в океанических осадках довольно быстро убывает с глубиной, что даёт возможность определить скорость осадконакопления она значительно изменялась со времени последнего оледенения. Тем не менее полное содержание в осадках мало по сравнению с его содержанием в атмосфере, биосфере и океанах.

Процессы переноса в океанах.

Вследствие буферных свойств карбонатной системы, изменение концентрации растворённого суммарного неорганического углерода в морской воде, необходимое для достижения состояния равновесия с возрастающей концентрацией атмосферного углекислого газа, мало, и равновесное состояние между атмосферным и растворённым в поверхностных водах устанавливается быстро. Роль океана в глобальном углеродном цикле определяется главным образом скоростью обмена вод в океане. Поверхностные слои океана довольно хорошо перемешаны вплоть до верхней границы термоклина, т.е. до глубины около 75 м в области широт примерно 45с 45ю. В более высоких широтах зимнее охлаждение вод приводит к перемешиванию до значительно больших глубин, а в ограниченных областях и в течение коротких интервалов времени перемешивание вод распространяется до дна океанов как, например, в Гренландском море и море Уэдделла. Кроме того, из областей основных течений в широтном поясе 45-55 Гольфстрим в Северной Атлантике, Куросио в северной части Тихого океана и Антарктическое циркумполярное течение происходит крупномасштабный перенос холодных поверхностных вод в область главного термоклина глубина 100-1000 м. В слое термоклина происходит также вертикальное перемешивание.

Оба процесса играют важную роль при переносе углерода в океане.

Между углекислым газом в атмосфере и растворённым неорганическим углеродом в поверхностных слоях морской воды равновесие устанавливается примерно в течение года если пренебречь сезонными изменениями. Растворённый неорганический углерод переносится вместе с водными массами из поверхностных вод в глубинные слои океана.

При движении водной массы его содержание обычно возрастает за счёт поступления углекислого газа при разложении и растворении детрита, опускающегося из поверхностного слоя океана. Возникающее в результате увеличение содержания суммарного растворённого неорганического углерода можно вычислить, принимая во внимание сопутствующий рост содержания питательных веществ и щёлочности.

Однако, таким способом нельзя достаточно точно определить значения концентрации для времени, когда происходило образование глубинных вод. Как было отмечено ранее, стационарное распределение в океанах обеспечивает примерный баланс между переносом, направленным в глубину поток детрита, и переносом, направленным к поверхности перемешивание и апвеллинг из глубоких слоёв с большими концентрациями. При поглощении антропогенного океаном поток растворённого неорганического углерода из глубинных слоёв к поверхностным уменьшается из-за повышения концентрации в поверхностных слоях океана, но при этом направленный вниз поток детрита остаётся неизменным.

Справедливость этого предположения подтверждает тот факт, что первичная продуктивность в поверхностном слое океана обычно лимитируется наличием питательных веществ. Однако питательные вещества не являются лимитирующим фактором для продуктивности в основных зонах апвеллинга, расположенных в южной части Антарктического циркумполярного течения в широтном поясе 55-60 ю.ш. Это обстоятельство указыавет на то, что имеются другие факторы, лимитирующие рост фитопланктона в таких широтах например, приходящая радиация, определяющая распространение границ морского льда в северные широты весной и ранним летом южном полушарии.

При других климатических режимах факторы, лимитирующие продуктивность, могут быть совершенно иными. Соответственно может изменяться и глобальный углеродный цикл. Авторы статьи, использованной в качестве основы для написания данной работы, проанализировали некоторые из этих возможных факторов и показали, что при определённых условиях в поверхностных слоях океана могут наблюдаться более низкие значения концентраций растворённого неорганического углерода по сравнению с современными, соответственно концентрации атмосферного будут также другими.

Эту углеродного цикла в океане можно отметить как возможный механизм увеличения направленного вниз потока углерода в случае, если бы потепление в высоких широтах вызвало уменьшение площади морского ледяного покрова.

Это механизм отрицательной обратной связи между углеродным циклом и климатической системой, т.е. повышение температуры в атмосфере должно привести к увеличению поглощения океаном и уменьшению скорости роста в атмосфере. При оценках возможных значений концентраций атмосферного в будущем обычно считают, что общая циркуляция океанов не будет изменятся. Однако несомненно, что в прошлом она менялась.

Если потепление, вызванное ростом концентрации в атмосфере, будет значительным, то, вероятно, произойдёт какое-то изменение циркуляции океана. В частности, может уменьшиться интенсивность образования холодных глубинных вод, что в свою очередь может привести к уменьшению поглощения антропогенного океаном. Изменение круговорота углерода могло бы произойти также при увеличении суммарного количества питательных веществ в океане. Если наличие питательных веществ в поверхностных слоях по-прежнему будет основным фактором, лимитирующим фотосинтез, их концентрации в этих слоях должны быть очень низкими. Следовательно, должен увеличится вертикальный градиент концентрации питательных веществ между обеднёнными этими веществами поверхностными водами и глубинными слоями.

В этом случае за счёт вертикального перемешивания в океане в поверхностные слои будет переноситься больше питательных веществ, что приведёт к росту интенсивности фотосинтеза, и, следовательно, увеличению потока детрита в глубинные слои океана.

Вертикальный градиент концентрации также возрастёт, а поверхностные значения и парциальное давление при этом уменьшатся. Брокер проанализировал возможные механизмы, которые могли бы играть существенную роль при переходе от ледниковья к межледниковью, особенно подчеркнув роль фосфатов. Действие этих механизмов могло бы объяснить довольно низкие концентрации углекислого газа в атмосфере, которые имели место в конце ледниковой эпохи, и высокие концентрации в атмосфере в более тёплый период времени.

Показано, что сложные вторичные механизмы могут вносить свой вклад в возможные изменения концентрации атмосферного в течение ближайших 100 лет, помимо непосредственного воздействия антропогенных выбросов. Как углерод, так и фосфор поступают в океан с речным стоком. Поток углерода составляет около г С год но может увеличится из-за интенсификации сельскохозяйственной деятельности и лесопользования. Поскольку циклы углерода и фосфора взаимосвязаны, полезно оценить рост потребления фосфора в качестве удобрений в сельском хозяйстве и промышленности.

Годовая добыча фосфора в 1972 году составляла г. И в дальнейшем значительно возросла. В водные системы озёра, реки, моря поступает не более 50 фосфора, а возможно, и значительно меньше, так как часть фосфора, использованного в качестве удобрений на полях и в лесах, остаётся в почвах. Для грубой оценки возможного роста первичной продуктивности в водных системах можно считать, что в процессе фотосинтеза используется 20-50 имеющегося количества фосфатов и что образованное таким образом органическое вещество становится частью углеродного цикла в океане или захороняется в отложениях.

Такое изменение продуктивности приведёт к удалению из атмосферы и поверхностных слоёв водных систем г. С год. Это количество соответствует 2-6 годового выброса углерода в атмосферу за счёт сжигания ископаемого топлива в 1972 году, поэтому данный процесс нельзя не учитывать при построении моделей изменения глобального климата.

– Конец работы –

Эта тема принадлежит разделу:

Углеродный цикл и изменения климата

Во многих районах для обработки земли уничтожалась лесная растительность, что приводило к увеличению скорости ветра у земной поверхности,… В сравнительно сухих областях уничтожение лесов часто сопровождается усилением… Вместе с этим уничтожение лесов даже на обширных пространствах оказывает ограниченное влияние на метеорологические …

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Донные осадки океана

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Потребление энергии и выбросы углекислого газа
Потребление энергии и выбросы углекислого газа. Энергия не производится ради самого производства энергии. В промышленно развитых странах основная часть вырабатываемой энергии приходится на п

Углерод в природе
Углерод в природе. Среди множества химических элементов, без которых невозможно существование жизни на Земле, углерод является главным. Химические превращения органических веществ связаны со способ

Основные химические соединения и реакции
Основные химические соединения и реакции. Известно более миллиона углеродных соединений, тысячи из которых участвуют в биологических процессах. Атомы углерода могут находиться в одном из девяти воз

Атмосферный углекислый газ
Атмосферный углекислый газ. Тщательные измерения содержания атмосферного были начаты в 1957 году Киллингом в обсерватории Мауна-Лоа. Регулярные измерения содержания атмосферного проводятся также на

Перемешивание в атмосфере
Перемешивание в атмосфере. Перемешивание воздуха в тропосфере происходит довольно быстро. Пассаты в средних широтах в обоих полушариях огибают Землю в среднем примерно за один месяц, вертика

Газообмен в системе атмосфера - океан
Газообмен в системе атмосфера - океан. Скорость газообмена. В стационарном состоянии, существовавшем в доиндустриальное время, более 90 содержащегося на Земле изотопа находилось в морской воде и до

Буферные свойства карбонатной системы
Буферные свойства карбонатной системы. При растворении в морской воде происходит реакция гидратации с образованием угольной кислоты, которая в свою очередь диссоциирует на ионы. Карбонатная система

Полное содержание углерода и щёлочность
Полное содержание углерода и щёлочность. Как показали исследования, содержание суммарного неорганического углерода в океане в 1983 году более, чем в 50 раз превышало содержание в атмосфере.

С в океане
С в океане. Распределение в растворённом неорганическом углероде во всех океанах было получено в ходе экспедиций по программе GEOSECS в 1972-1978 годах. Оказалось, что максимальные значения

Углерод в биоте и первичная продуктивность
Углерод в биоте и первичная продуктивность. В течение последних 20 лет были предприняты многочисленные попытки определения запасов углерода в континентальной растительности и характеристик его годо

Углерод в почве
Углерод в почве. По разным оценкам, суммарное содержание углерода в составляет около г С. Главная неопределённость существующих оценок обусловлена недостаточной полнотой сведений о площадях и содер

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги