рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Закаливание растений

Работа сделанна в 2001 году

Закаливание растений - Реферат, раздел Биология, - 2001 год - Экологические основы устойчивости растений Закаливание Растений. Морозоустойчивость - Не Постоянное Свойство Растений. О...

Закаливание растений. Морозоустойчивость - не постоянное свойство растений. Она зависит от физиологического состояния растений и условий внешней среды. Растения, выращенные при относительно низких положительных температурах, более устойчивы, чем выращенные при относительно высоких осенних температурах. Свойство морозоустойчивости формируется в процессе онтогенеза растения под влиянием определенных условий среды в соответствии с генотипом растения, связано с резким снижением темпов роста, переходом растения в состояние покоя.

Жизненный цикл развития озимых, двуручек, двулетних и многолетних растений контролируется сезонным ритмом светового и температурного периодов. В отличие от яровых однолетних растений они начинают готовиться к перенесению неблагоприятных зимних условий с момента остановки роста и затем в течение осени во время наступления пониженных температур. Повышение морозоустойчивости растений тесно связано с закаливанием - постепенной подготовкой растений к воздействию низких зимних температур.

Закаливание - это обратимая физиологическая устойчивость к неблагоприятным воздействиям среды. Способностью к закаливанию обладают не все растения. Растения южного происхождения не способны переносить морозы. Способность к закаливанию у древесных и зимующих травянистых растений северных широт, переживающих значительное понижение температуры в зимний период, в период летней вегетации отсутствует и проявляется только во время наступления осенних пониженных температур если растение к этому времени прошло необходимый цикл развития. Процесс закалки приурочен лишь к определенным этапам развития растений. Для приобретения способности к закаливанию растения должны закончить процессы роста.

Разные органы растений имеют неодинаковую способность к закаливанию, например, листья листопадных деревьев яблоня, груша, вишня не обладают способностью к закаливанию цветочные почки закаливаются хуже, чем листовые. У вегетирующих растений легко вымерзают растущие и не закончившие рост органы.

Выносливость растений к низким температурам в этот период незначительная. Эффект закаливания может не проявиться, если по каким-либо причинам засуха, поздний посев, посадки и др. произошла задержка развития растений. Так, если в течение лета у плодовых растений процессы роста из-за летней засухи не успели закончиться, то зимой это может привести к гибели растений. Дело в том, что засуха, приостанавливая рост летом, не позволяет растениям завершить его к осени.

Одновременно при закалке должен произойти отток различных веществ из надземных органов в подземные зимующие корневые системы, корневища, луковицы, клубни. По этой же причине закалку травянистых и древесных растений ухудшает избыточное азотное питание, удлиняющее период роста до поздней осени, в результате растения не способны пройти процессы закаливания и гибнут даже при небольших морозах. Яровые злаки при озимом посеве по сравнению с озимыми растут при более пониженных положительных температурах, в осенний период почти не снижают темпов роста и не способны к закаливанию. Большую роль в закаливании играют условия внешней среды.

Так, на озимых культурах убедительно показана необходимость света для процесса закаливания. Сокращение фотопериода служит для растений сигналом к прекращению роста и стимулом для накопления ингибиторов в растениях. Вероятно, с этих процессов начинается формирование морозоустойчивости у растений. Растения, выращенные при несоответствующем фотопериоде, не успевают завершить летний рост и не способны к закаливанию.

Установлено, что длинный день способствует образованию в листьях черной смородины фитогормонов стимуляторов роста, а короткий - накоплению ингибиторов. В естественных условиях к закаливанию способен лишь организм в целом, при обязательном наличии корневой системы. По-видимому, в корнях вырабатываются вещества, повышающие устойчивость растения к морозу. Фазы закаливания. По И. И. Туманову 1979 , процесс закаливания растений требует определенного комплекса внешних условий и проходит в две фазы, которым предшествуют замедление роста и переход растений в состояние покоя.

Прекращение роста и переход в состояние покоя - необходимые условия прохождения первой фазы закаливания. Однако само по себе оно лишь немного повышает морозоустойчивость растения. У травянистых растений переход в состояние покоя происходит в период первой фазы закаливания. У древесных покой наступает в начале осени, до прохождения первой фазы закаливания. При переходе в состояние покоя изменяется баланс фитогормо-нов уменьшается содержание ауксина и гиббереллинов и увеличивается содержание абсцизовой кислоты, которая, ослабляя и инги-бируя ростовые процессы, обусловливает наступление периода покоя.

Поэтому обработка растений озимой пшеницы, люцерны и других культур в этот период ингибиторами роста например, хлор-холинхлоридом - ССС или трииодбензойной кислотой повышает устойчивость растений к низким температурам. Первая фаза закаливания проходит на свету и при низких положительных температурах в ночное время днем около 10 С, ночью около 2 С , останавливающих рост, и умеренной влажности почвы.

Озимые злаки проходят первую фазу на свету при среднесуточной температуре 0,5-2 С за 6-9 дней, древесные - за 30 дней. В эту фазу продолжается дальнейшее замедление и даже происходит полная остановка ростовых процессов. Свет в этой фазе необходим не только для фотосинтеза, но и для поддержания ультраструктур клетки.

В таких условиях за счет фотосинтеза образуются сахара, а понижение температуры в ночное время значительно снижает их расход на дыхание и процессы роста. В результате в клетках растений накапливаются сахароза, другие олигосахариды, растворимые белки и т. д в мембранах возрастает содержание ненасыщенных жирных кислот, снижается точка замерзания цитоплазмы, отмечается некоторое уменьшение внутриклеточной воды. Благоприятные условия для прохождения первой фазы закаливания озимых растений складываются при солнечной и прохладной дневная температура до 10 С погоде, способствующей накоплению в тканях растений углеводов и других защитных веществ.

В естественных условиях оптимальный срок первой фазы закаливания озимых злаков до двух недель. За это время количество сахаров в растениях возрастает до 70 на сухую массу или до 22 на сырую массу, т. е. близко содержанию Сахаров в корнеплодах лучших сортов сахарной свеклы. Растения озимой пшеницы можно закалить и в темноте при 2 С, если их корни или узлы кущения погрузить в раствор сахарозы.

Такие растения выдерживают морозы до -20 С И. И. Туманов, 1979 . Накапливающиеся в процессе закаливания сахара локализуются в клеточном соке, цитоплазме, клеточных органеллах, особенно в хлоропластах. При закаливании растений высокоморозоустойчивого сорта озимой пшеницы при температуре, близкой к О С, количество Сахаров в хлоропластах листьев увеличивалось в 2,5 раза, благодаря чему хлоропласты продолжали функционировать.

Повышение содержания сахаров в хлоропластах коррелирует с морозоустойчивостью растений. В хлоропластах содержатся те же формы сахаров, что и в листьях фруктоза, глюкоза, сахароза, олигосахара Т. И. Трунова, 1970 . Имеются данные, что при накоплении сахаров процесс фотофосфорилирования продолжается даже при отрицательных температурах. Более морозоустойчивые виды и сорта растений лучше накапливают сахар именно при сочетании пониженной температуры и умеренной влажности почвы. Дело в том, что в первой фазе закаливания происходит уменьшение содержания свободной воды, а излишняя влажность почвы при дождливой осени затрудняет этот процесс, повышается вероятность в последующем образования внутриклеточного льда и гибели растений.

Метаболические изменения, наблюдаемые во время первой фазы, могут быть вызваны изменением гормонального и энергетического балансов, что определяет синтез и активацию специфических ферментов, свойства клеточных мембран закаленных тканей. Накапливающаяся в тканях абсцизовая кислота увеличивает проницаемость мембран для воды, водоотдачу клеток.

К концу первой фазы закаливания все зимующие растения переходят в состояние покоя. Однако процессы закалки, перестройки процессов обмена веществ продолжаются. Вторая фаза закаливания не требует света и начинается сразу же после первой фазы при температуре немного ниже О С. Для травянистых растений она может протекать и под снегом. Длится она около двух недель при постепенном снижении температуры до -10 20 С и ниже со скоростью 2-3 С в сутки, что приводит к частичной потере воды клетками, освобождению клеток тканей от избыточного содержания воды или витрификации переходу воды в стеклообразное состояние. Явление витрификации воды в растительных клетках наступает при резком охлаждении ниже -20 С . Стеклообразная растительная ткань долго сохраняет свою жизнеспособность.

При постепенном понижении температуры в межклеточниках образуется лед и начинают функционировать механизмы, предохраняющие подготовленные в первой фазе закаливания растения от чрезмерного обезвоживания.

Накопившиеся в первой фазе закаливания сахара изменяют устойчивость биоколлоидов цитоплазмы к низким температурам, возрастает относительное количество коллоидно-связанной воды. Вторая фаза обеспечивает отток из цитозоля клеток почти всей воды, которая может замерзнуть при отрицательной температуре. При критических температурах отток воды из клеток значительно ухудшается, появляется много переохлажденной воды, которая затем замерзает внутри протопласта и может привести к гибели клеток.

Следовательно, чем менее морозоустойчиво растение, тем медленнее должна протекать вторая фаза закаливания. Действующими факторами второй фазы закаливания являют- ся обезвоживание, вызывающее сближение молекул в цитозоле, вязкость которого соответственно увеличивается низкая температура, уменьшающая тепловое движение молекул в протопласте. В результате во второй фазе закаливания происходит перестройка белков цитоплазмы, накапливаются низкомолекулярные водорастворимые белки, более устойчивые к обезвоживанию, синтезируются специфические белки.

Содержание незамерзающей связанной воды в тканях зимостойкой пшеницы почти в 3 раза выше по сравнению с незимостойкой. Перестройка цитоплазмы увеличивает проницаемость ее для воды, способствует более быстрому оттоку воды в межклеточники, что снижает опасность внутриклеточного льдообразования. При обезвоживании, происходящем под влиянием льдообразования, наблюдаются сближение и деформация белковых молекул, связи между которыми могут рваться и не восстанавливаются, что пагубно для клетки.

Очевидно, при таких условиях происходит быстрое смещение структурных частиц по отношению друг к другу, что приводит к разрушению субмикроскопической структуры протопласта И. И. Туманов. Цитоплазма закаленных растений более устойчива к механическому давлению. Поэтому важно наличие у молекул белков сульфгидрильных и других гидрофильных группировок, которые способствуют удержанию воды, препятствуют слишком сильному сближению молекул белка.

Между содержанием сульфгидрильных групп и морозоустойчивостью клеток растений установлена положительная связь. Благодаря изменению свойств молекул белков и межмолекулярных связей в процессе закаливания постепенное обезвоживание приводит к переходу цитоплазмы из состояния золя в гель. Первая фаза закаливания повышает морозоустойчивость растений с -5 до -12 С, вторая увеличивает морозоустойчивость, например, у пшеницы до -18 20 С, у ржи - до -20 25 С. Растения, находящиеся в глубоком органическом покое, отличаются способностью к закаливанию и выдерживают проморажи-вание до -195 С. Так, черная смородина после наступления состояния глубокого покоя и завершения первой фазы закаливания переносила охлаждение до -253 С И. И. Туманов, 1979 . Не у всех растений процесс закаливания проходит в две фазы. У древесных растений, имеющих в тканях достаточное количество Сахаров, сразу же протекают процессы, свойственные второй фазе закаливания.

Однако не все растения способны к закаливанию.

Теплолюбивые растения хлопчатник, рис, бахчевые культуры при длительном пребывании при температурах немного выше О С не только не становятся устойчивыми, но еще сильнее повреждаются или даже погибают, так как в них накапливаются ядовитые вещества, усиливающие губительное действие на растения низких температур.

– Конец работы –

Эта тема принадлежит разделу:

Экологические основы устойчивости растений

Приспособленность онтогенеза растений к условиям среды является результатом их эволюционного развития изменчивости, наследственности, отбора . На… Так, теплолюбивые растения и растения короткого дня характерны для южных… В природе в одном географическом регионе каждый вид растений занимает экологическую нишу, соответствующую его…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Закаливание растений

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Границы приспособления и устойчивости
Границы приспособления и устойчивости. В естественных для вида природных условиях произрастания или возделывания растения в процессе своего роста и развития часто испытывают воздействие неблагоприя

Защитные возможности растений
Защитные возможности растений. В неблагоприятных природных условиях устойчивость и продуктивность растений определяются рядом признаков, свойств и защитно-приспособительных реакций. Различные виды

Физиолого-биохимические изменения у теплолюбивых растений при пониженных положительных температурах
Физиолого-биохимические изменения у теплолюбивых растений при пониженных положительных температурах. Повреждение растений холодом сопровождается потерей ими тургора и изменением окраски из-з

Приспособление растений к низким положительным температурам
Приспособление растений к низким положительным температурам. У растений более холодостойких отмеченные нарушения выражены значительно слабее и не сопровождаются гибелью растения табл. 1 . Устойчиво

Способы повышения холодостойкости некоторых растений
Способы повышения холодостойкости некоторых растений. Холодостойкость некоторых теплолюбивых растений можно повысить закаливанием прорастающих семян и рассады, которое стимулирует защитно-пр

Замерзание растительных клеток и тканей и происходящие при этом процессы
Замерзание растительных клеток и тканей и происходящие при этом процессы. Способность растений переносить отрицательные температуры определяется наследственной основой данного вида растений,

Условия и причины вымерзания растений
Условия и причины вымерзания растений. Образующийся при медленном промерзании в межклеточниках и клеточных стенках лед оттягивает воду из клеток клеточный сок становится концентрированным, и

Обратимость процессов закаливания
Обратимость процессов закаливания. В период прохождения фаз закаливания формируется морозоустойчивость растений. Морозоустойчивость представляет собой процесс, а не постоянное свойство расте

Способы повышения морозоустойчивости
Способы повышения морозоустойчивости. Основа решения этой задачи - селекция морозоустойчивых сортов растений, хорошо адаптирующихся к климатическим условиям данного региона. Следует еще раз отметит

Методы изучения морозоустойчивости растений
Методы изучения морозоустойчивости растений. И. И. Тумановым с сотрудниками предложены лабораторные методы ускоренного определения морозоустойчивости различных культурных растений. Испытуемые расте

Зимостойкость как устойчивость к комплексу неблагоприятных факторов перезимовки
Зимостойкость как устойчивость к комплексу неблагоприятных факторов перезимовки. Непосредственное действие мороза на клетки - не единственная опасность, угрожающая многолетним травянистым и древесн

Физиологические аспекты яровизации
Физиологические аспекты яровизации. Изучение физиологических реакций, лежащих в основе яровизации, проводилось на относительно небольшом числе видов, и наши знания по данному вопросу базируются гла

Диагностика жароустойчивости
Диагностика жароустойчивости. Физиологическая стойкость растений к перегреву обусловливается особыми физико-химическими свойствами протоплазмы и способностью обезвреживать накапливающиеся в

Совместное действие недостатка влаги и высокой температуры на растение
Совместное действие недостатка влаги и высокой температуры на растение. Засуха вызывает в первую очередь нарушения водного режима растений, которые затем отражаются и на остальных его физиологическ

Особенности водообмена у ксерофитов и мезофитов
Особенности водообмена у ксерофитов и мезофитов. Засухоустойчивость обусловлена генетически определенной приспособленностью растений к условиям места обитания, а также адаптацией к недостатку воды.

Влияние на растения недостатка влаги
Влияние на растения недостатка влаги. Недостаток воды в тканях растений возникает в результате превышения ее расхода на транспирацию перед поступлением из почвы. Это часто наблюдается в жарк

Физиологические особенности засухоустойчивости сельскохозяйственных растений
Физиологические особенности засухоустойчивости сельскохозяйственных растений. Засухоустойчивость сельскохозяйственных растений - это комплексный признак, связанный с рядом их физиологических

Предпосевное повышение жаро- и засухоустойчивости
Предпосевное повышение жаро- и засухоустойчивости. И. В. Мичурин, пытаясь получить засухоустойчивые сорта плодовых, выращивал растения в условиях недостаточного водоснабжения. Растения, пере

Повышение засухоустойчивости культурных растений
Повышение засухоустойчивости культурных растений. На засухоустойчивость влияют удобрения калийные и фосфорные повышают ее, азотные, особенно в больших дозах снижают. Засухоустойчивость ряда

Орошение как радикальное средство борьбы с засухой
Орошение как радикальное средство борьбы с засухой. Наиболее эффективным способом борьбы с засухой в аридных регионах является орошение. Оно эффективно и в районах, где осадков выпадает достаточно,

О природе приспособительных реакций к недостатку воды у разныхгрупп растений
О природе приспособительных реакций к недостатку воды у разныхгрупп растений. Транспирирующие органы - листья - отличаются значительной пластичностью в зависимости от условий произрастания в их стр

КРИТИЧЕСКИЕ ПЕРИОДЫ В ВОДООБМЕНЕ РАЗНЫХ РАСТЕНИЙ
КРИТИЧЕСКИЕ ПЕРИОДЫ В ВОДООБМЕНЕ РАЗНЫХ РАСТЕНИЙ. В онтогенезе растения неодинаково чувствительны к недостатку воды. Очень чувствительны растения к недостатку воды в периоды наибольшего роста конкр

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги