Стратегия клонирования генов

Стратегия клонирования генов. Векторные молекулы в обязательном порядке содержат маркерные гены, которые после переноса вектора в клетки-реципиенты сообщают им новые свойства. Это может быть устойчивость к антибиотику, которой до трансформации клетки не обладали, или образование фермента, синтез которого в клетках-реципиентах не происходил.

Благодаря таким вновь приобретенным признакам клетки с векторными ДНК могут быть легко найдены в популяции исходных клеток. Одновременно могут быть отобраны те клетки, которые содержат векторы со встроенными в них чужеродными ДНК рекомбинантные ДНК . Для этого встраивание чужеродной ДНК в вектор производится таким образом, чтобы один из маркерных признаков вектора нарушался. Так, например, если бактериальный вектор несет устойчивость к двум антибиотикам, то чужеродную ДНК встраивают в один Рисунок 3. Схема прямого и обращенного процесса самосплайсинга. из генов антибиотической устойчивости.

И тогда бактерии с рекомбинантной ДНК, в отличие от бактерий с исходным вектором, могут расти в присутствии только одного из антибиотиков. Другой весьма распространенный пример связан с наличием в векторной ДНК наряду с генами, сообщающими клетке устойчивость к антибиотикам, фрагмента лактозного оперона, обеспечивающего образование в клетках-реципиентах активного фермента -галактозидазы.

Колонии клеток с таким признаком легко обнаруживаются при выращивании их на твердом агаре, содержащем в качестве субстрата -галактозидазы 5-бром-4-хлор-3-индолил галактозид X-gal, поскольку его расщепление приводит к образованию бромхлориндола - красителя, окрашенного в голубой цвет. Если же в ген -галактозидазы этого вектора встроена чужеродная ДНК таким образом, что этот ген оказался нарушенным, то трансформированные им клетки будут образовывать бесцветные колонии. Само же присутствие рекомбинантного вектора в клетках может быть зафиксировано по их устойчивости к антибиотику.

На следующем этапе среди популяции клеток с рекомбинантными векторами необходимо отобрать индивидуальные клоны, содержащие только интересующие нас гены или их фрагменты. Само собой разумеется, что это в принципе возможно только в том случае, если в исходные клетки проникло в среднем по одной молекуле рекомбинантной ДНК. Способ же отбора клонов в значительной степени зависит от природы клонируемого гена. По-видимому, самым простым является случай, когда клонируемый ген способен комплементировать ауксотрофную мутацию в штамме-реципиенте. В этом случае клетки высеваются на среду, лишенную вещества, необходимого для роста данного штамма, и только клетки, содержащие рекомбинантную ДНК с искомым геном, способны расти на этой среде.

Из таких клонов получают гомогенную культуру клеток, которую используют для получения искомого сегмента ДНК, проделывая все операции в обратном порядке то есть из клеток выделяют вектор, из него вычленяют необходимый фрагмент ДНК и так далее. Гораздо чаще для отбора необходимых клонов приходится прибегать к методу ДНК-ДНК- или ДНК-РНК-гибридизации.

Для этого необходимо располагать зондами индивидуальными молекулами ДНК или РНК или их фрагментами, комплементарными нуклеотидной последовательности клонируемого гена. Это могут быть специально синтезированные олигодезоксирибонуклеотиды длиной в 15-20 остатков, последовательность которых выбрана на основании полностью или частично известной первичной структуры гена или закодированного в нем белка.

Это могут быть кДНК, синтезированные на индивидуальных РНК-копиях данного гена как таковые или в виде отклонированных, то есть существенно умноженных в количестве фрагментов ДНК . Наконец, это могут быть сами индивидуальные РНК, закодированные в данном гене. Ясно, что во всех случаях зонды должны нести радиоактивную метку обычно 32Р с достаточно высокой удельной активностью.

Если же индивидуальный зонд недоступен, то применяют методы, которые из большого числа рекомбинантов 106 позволяют выбрать сравнительно небольшую группу около 102 , включающую рекомбинант с искомым геном. Эта группа подразделяется на подгруппы например, на 10 по 10 рекомбинантов. Из каждой подгруппы выделяется ДНК, которую используют для синтеза мРНК и последующей трансляции ее с целью обнаружения соответствующего продукта искомого гена. Трансляция мРНК может быть осуществлена в бесклеточной системе. Однако в случае эукариотических генов мРНК часто переносят в ооциты лягушки ксенопуса с помощью техники микроинъекции, где она транслируется.

Продукт трансляции обычно обнаруживают с помощью антител. Далее в подгруппе, где обнаружен искомый ген, тем же методом исследуется каждый клон. При наличии зонда с чашки Петри, на которой выращены колонии клеток, делается отпечаток реплика на нитроцеллюлозном фильтре. Клеткам дают вырасти на фильтре, затем их разрушают, подвергают ДНК щелочной денатурации и фильтр прогревают при 80 С, после чего ДНК необратимо с ним связывается.

Фильтр отмывают от примесей и обрабатывают радиоактивным зондом в условиях, оптимальных для ДНК-ДНК- или ДНК-РНК-гибридизации. После удаления избытка зонда методом ауторадиографии определяют положение клеточного клона, содержащего участок ДНК с нуклеотидной последовательностью, комплементарной зонду. Этот клон становится затем источником клеток для получения искомого гена или его фрагмента.

Для селекции клонов, несущих необходимый ген, достаточно широко применяются и иммунологические методы. Принцип отбора на первых этапах тот же, что и при использовании ДНК- и РНК-зондов. Далее с колоний с рекомбинантными ДНК делается реплика с помощью полимерной пластинки, на которой закреплены антитела к продукту искомого гена. Положение клонов, вырабатывающих этот белок, определяется также с помощью антител, но уже меченных радиоактивным йодом 125I . 1.2.4.