Биореакторы с псевдоожиженным слоем катализатора

Биореакторы с псевдоожиженным слоем катализатора. Процессы в псеводоожиженном слое катализатора обычно осуществляют в реакторах колонного типа, рассмотренных в предыдущем разделе, поэтому если такие процессы включают подачу или отвод газа, то расчет газовых потоков и массопереноса должен выполняться так, как было только что описано.

В то же время в реакторах с псевдоожиженным слоем катализатора появляется еще одна фаза. В башенном реактрое с псевдоожиженным слоем катализатора поток жидкости направлен снизу вверх по высокому вертикальному цилиндру.

Частицы нерастворимого биокатализатора скопления микроорганизмов, частицы иммобилизованных ферментов или клеток суспендируются, увлекаемые восходящим потоком жидкости. Вовлеченные в этот поток частицы катализатора в верхней расширяющейся части реактора прекращают подъем и затем вновь возвращаются в башню.

Если тщательно подобрать режим работы реактора с учетом характеристик организма, то биокатализатор удается удерживать в реакторе, несмотря на то, что через реактор неперерывно протекает среда. Например, в башенных ферментерах, использующихся в непрерывных процессах пивоварения, создается определенный градиент концентрации дрожжевых клеток по высоте башни, причем бвлизи от дна реактора концентрация микроорганизмов может достигать 35, а в верхней части башни этот парамент снижается до 5-10. Более того, в зависимости от высоты в реакторе постепенно изменяются и характеристики среды.

Так, вблизи зоны поступления исходных питательных вещств превращениям подвергаются прежде всего легко ферментируемые сахара, что приводит к снижению плотности среды. В средней и верхней зонах башни скопления дрожжевых клеток трансформируют мальтотриозу и отчасти мальтозу. Такая картина, характеризующаяся быстрыми реакциями в начальной стадии процесса и последующими более медленными реакциями с участием менее удобных субстратов, согласуется с экспериментальными данными, предствленными на рисунке 13. Рудиментарная модель реактора с псеводоожиженным слоем катализатора может быть разработана, если допустить, во-первых, что частицы биологического катализатора хлопья скоплений микроорганизмов или частицы иммобилизованного фермента однородны по форме и размерам во-вторых, что плотность жидкой фазы является функцией концентрации субстрата в-третьих, что движение жидкой фазы в реакторе осуществляется в режиме полного вытеснения в-четвертых, что реакция утилизации субстрата имеет первый порядок по биомассе, но нулевой порядок по субстрату в-пятых, что числа Рейнольдса частиц катализатора, рассчитанные по их конечной скорости, достаточно малы, так что движение частицы может быть описано законом Стокса.

Четвертое и пятое допущение достаточно обосновнны во многих ситуациях первое, второе и третье в ряде случаев так же могут быть оправданы.

При указанных допущениях скорость утилизации субстрата можно описать уравнением типа dsudz kx, или u dsdz s dudz kx 4 Если движение частиц клеток описывается законом Стокса, то зависимость концентрации суспендированной биомассы от скорости потока жидкости в псевдоожиженном слое должна подчиняться уравнению x 0 1 uut14.65 5 Здесь 0 плотность культуры микроорганизмов масса сухого клеточного вещества в единице объема, а ut конечная скорость сферы в стоксовом потоке.

Любое именением плотности жидкой фазы мало сказывается на величине u. Если и не зависит от положения в реакторе, то уравнение 4 можно проинтегрировать непосредственно и таким путем получить sc sf k0 1 uuf14.65Lu 6 Здесь L высота башни при выводе этого уравнения принималось, что х определяесят уравнением 5. Отражаемая уравнением 6 линейная зависимость концентрации субстарата от среднего времени реакции Lu если допустить, что так же линейно зависит от s действительно наблюдается по меньшей мере на некоторых участках соответствующей кривой рис. 13. Основным недостатком этой модели является обезличивание субстратов.

Действительно, в обсуждаемой модели различные сахара, утилизируемые в ходе анаэробного спиртового брожения, сгруппированы в некий гипотетический единый и средний субстрат.

При таком подходе исключается возможность учета эффекта глюкозы, играющего очень важную роль в процессах пивоварения в башенных ферментерах непрерывного действия. Что касается потока жидкой фазы через псеводоожиженный слой, то обычно желательно поддерживать режим полного вытеснения.

Нестабильная структура течений в слое в ряде случаев может вызывать существенное обратное смешение, нарушающее ход процесса и нормальную работу реактора. Вероятность обратного смешения возрастает при уменьшении диаметра колонны и снижении скорости потока жидкой фазы. В то же время в биореакторах с псевдоожиженным слоем катализатора в силу малых размеров его частиц и небольшого различия между плотностями жидкой фазы и катализатора приходится ограничиваться относительно невысокими линейными скоростями потока жидкости. Кроме того, при понижении скорости потока жидкой фазы повышается концентрация катализатора в реакторе.

Показано, что Введение в биореактор с псевдоожиженным слоем катализатора статических элементов перемешивания может значительно улучшить характеристики расширения слоя и снизить нежелательное обратное смешение. Поскольку реакторы с неподвижным слоем катализатора в общем случае ближе к реакторам полного вытеснения, может возникнуть вопрос о целесообразности и преимуществах биореакторов с псевдоожиженным слоем катализатора. Прежде всего преимущества таких реакторов очень ярко проявляются при необходимости контакта реакционной смеси с газами.

В реакторах с неподвижным слоем катализатора довольно трудно добиться эффективной аэрации особенно при большом объеме реактора, а если в ходе процесса образуются газообразные продукты, например, углекислый газ, то нелегко и предупредить избыточное накопление газа в верхней части реактора с неподвижным слоем.

Реактор с псевдоожиженным слоем катализатора обеспечивает режимы течений, в большей степени способствующие межфазному контакту в системе газ жидкость твердое тело. Хороший контакт между газовой и жидкой фазами, с одной стороны, и биокатализаторо, с другой, обеспечивают так же реакторы со струйным течением жидкости. 2.4. Реакторы с неподвижным слоем катализатора и со струйным течением жидкости Содержимое реакторов с неподвижным слоем катализатора и струйным течением жидкости представляет собой трехфазную систему, состоящую из неподвижного слоя нерастворимого катализатора, а так же подвижной газовой и жидкой фаз. Поступающая в реактор газовая и жидкая фазы содержат по одному или несколько реагентов, поэтому скорость биохимической реакции зависти зависит от характеристик контакта между жидкостью, в которую переносится ограниченно растворимый реагент из газовой фазы, и поверхностью катализатора.

На работу таких реакторов в существенной степени влияет физическое состояние газожидкостного потока, проходящего через неподвижный слой катализатора, и связанные с этим процессы массопереноса.

К числу важных характеристик таких реакторов и содержащихся в них систем относятся площадь поверхности катализатора, эффективность смачивания катализатора подвижной жидкой фазой, структура течений газожидкостной смеси, массопереноса ограниченно растворимых реагентов из газовой в жидкую фазу, массопереноса реагентов к поверхности катализатора, а в случае пористого или проницаемого катализатора диффузия реагентов к каталитическим центрам, находящимся внутри частиц катализатора.

Одной из первых областей применения биореакторов с насадкой и струйным течением жидкости, сохраняющей свое значение и в настоящее время, является обработка сточных вод с помощью биологических капельных фильтров. Вращающееся распределительное устройство разбрызгивает поток жидких отходов по кольцевому слою гравия, на котором находится пленка микроорганизмов. Жидкость стекает через неподвижный слой в почти ламинарном режиме, а воздух поднимается через слой катализатора благодаря естественной конвекции за счет выделяющейся в микробиологическом процессе теплоты.

Аналогичный принцип лежит в основе традиционного способоа производства винного уксуса биологическое окисление этанола до уксусной кислоты, где применяются прямоугольные колонны с насадкой из древесной щепы. Для ламинарного течения жидкой фазы и упрощенной геометрии слоя, например для плоского слоя, можно создать детальную математическую модель, описывающую характеристики потоков и процессов переноса, и решить соответствующие уравнения.

В промышленности встечаются и другие конструкции реакторов со струйным течением жидкости и неподвижным слоем катализатора, в частности такие, в которых параллельные потоки газовой и жидкой фаз движутся сверху вниз или снизу вверх. При изучении режима работы таких реакторов необходимо помнить, что в зависимости от относительных скоростей газовых и жидкостных потоков и в некоторой степени от других свойств газожидкостной системы можно получить самые разные дисперсные системы, начиная от непрерывной жидкой фазы с диспергированными в ней газовыми пузырьками и заканчивая непрерывной газовой фазой с диспергированными каплями жидкости туманом рис. 14. На этом рисунке выделена и зона нестабильности потока, когда через реактор непрерывно проходят газ и жидкость в виде крупных газовых пузырей и жидких поршней соответственно. Участки графика, обозначенные как пилотная установка и промышленная установка, заимствованы из опытных данных, полученных при изучении процессов перереботки нефти.

В некоторых режимах работы биореактора применяются низкие скорости потока воздуха.

Так, в процессах биологической обработки отходов на капельных фильтрах аэрация осуществляется за счет естественной конвекции, обусловленной небольшой экзотермичностью происходящих реакций. Конструкционно реакторы с неподвижным слоем катализатора и со струйным течением жидкости напоминают реакторы, рассматривавшиеся ранее.

При математическом моделировании систему обычно условно рассматривают, как твердую фазу, находящуюся в контакте с жидкой пленкой, которая в свою очередь контактирует с газовой фазой. В сущности такой подход к моделированию является расширенным вариантом уже упоминавшейся двухфазной модели барботажной колонны. Затем рассматриваются процессы переноса между фазами и в каждой из фаз, а так же ограничения, налагаемые на скорость реакций диффузионными эффектами.