рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Скрытая масса

Скрытая масса - раздел Биология, Начало и конец Вселенной Скрытая Масса. Дополнительная Масса, Требующаяся Для Того, Чтобы Вселенная Бы...

Скрытая масса. Дополнительная масса, требующаяся для того, чтобы Вселенная была замкнутой, называется скрытой массой.

Это не очень удачное название, поскольку вполне может оказаться, что ее вообще нет. Однако имеются серьезные свидетельства того, что она существует, но в странном, непривычном виде. Давно известно, что в галактиках есть много невидимого вещества, часть его относится к отдельным галактикам, а часть - к их скоплениям. Рассмотрим эти случаи по очереди и начнем с отдельных галактик. Определить полную массу галактики довольно легко. Для этого вовсе не нужно рассчитывать средние массы звезд, а затем суммировать их по всему пространству это слишком трудно, а то и невозможно.

Применяется другой метод, и чтобы понять его, рассмотрим вначале Солнечную систему. Известно, что планеты движутся вокруг Солнца по орбитам, параметры которых подчиняются трем законам, открытым Иоганном Кеплером несколько веков назад. Один из этих законов позволяет определить скорость планеты, если известна масса всего вещества, заключенного в пределы ее орбиты в случае Солнечной системы почти вся масса сосредоточена в Солнце. Закон, естественно, работает и в другую сторону - зная скорость планеты, можно определить полную массу объектов, находящихся внутри ее орбиты.

Такой подход полностью применим и к галактикам. Наше Солнце, например, находится на расстоянии примерно 3 5 от центра Галактики. Измерив его орбитальную скорость, можно узнать массу всех звезд, расположенных между нами и центром Галактики. Расчет, конечно, не позволит вычислить полную массу Галактики, для этого потребуется какая-нибудь звезда на ее периферии. На самом деле для этого даже не нужна звезда, годится любой объект.

Астрономы несколько лет назад измерили скорость внешних облаков водорода в соседних с нами спиралях галактик и обнаружили, что они движутся гораздо быстрее, чем должны были бы согласно принятой оценке массы галактики. Изучив эту проблему глубже, они пришли к выводу, что на окраинах этих галактик должно быть значительное количество вещества в форме гало. К удивлению ученых выяснилось, что масса таких гало превышает массу звезд.

Из чего же они состоят? Ясно, что не из звезд, иначе они были бы видны. Возможно, это очень слабые звезды или обломки, пыль, газ. Если гало есть у всех галактик, то, конечно, масса их значительно возрастет, а следовательно, увеличится и масса всей Вселенной. Но окажется ли этого достаточно, чтобы замкнуть Вселенную? Вычисления показали, что нет, но история на этом не кончается. Большинство галактик во Вселенной образуют скопления иногда в скопления входят только две-три галактики, но обычно гораздо больше.

В наше скопление, например, их входит около 30. Научившись определять массу отдельных галактик, астрономы обратились к их скоплениям. Просуммировав массы отдельных галактик, они обнаружили, что их недостаточно для того, чтобы силы притяжения удерживали скопление вместе как единое целое. Тем не менее они явно не собирались распадаться - ничто не указывало на разлет отдельных галактик. Некоторым скоплениям не хватало сотен собственных масс, чтобы удержать их вместе силами гравитационного притяжения.

Даже добавление дополнительной массы, заключенной в гало, не спасало положения. Учитывая это, легко понять, почему ученые говорят о скрытой массе. Если она действительно существует, то в какой форме? Очевидно, в такой, которую нелегко обнаружить. Это может быть, например, газообразный водород - либо нейтральный атомарный, либо ионизованный т. е. получивший заряд в результате потери электронов. Однако при ближайшем рассмотрении оказывается, что нейтральный водород на эту роль не подходит.

Он излучает на волне 21 см и соответствующие наблюдения показали, что как между ближними, так и между дальними галактиками водорода совсем немного. Одно время считалось, что подойдет ионизованный водород, поскольку фоновое рентгеновское излучение во Вселенной связывалось именно с ним. Однако позже выяснилось, что это излучение скорее всего вызывается квазарами. Тогда пришла очередь нейтронных звезд, белых карликов и черных дыр, но и они в конце концов отпали.

Черные дыры должны были бы быть сверхмассивными иметь массу порядка галактической или же встречаться очень часто, что маловероятно. Исследования показали, что хотя в центре многих, если не всех, галактик могут быть массивные черные дыры, нет свидетельств существования таких изолированных дыр в скоплениях, иначе была бы вероятность заметить их и в нашей Галактике. В качестве возможных кандидатов рассматривались и фотоны, ведь энергия есть одна из форм существования материи.

Однако и в этом случае расчеты показали, что их вклад явно недостаточен. Создавалось впечатление, что во Вселенной просто недостаточно материи и потому она незамкнута. Тем не менее некоторые ученые были убеждены, что в конце концов недостающая масса найдется. И вот наступила кульминация В предыдущей главе говорилось, что весь дейтерий во Вселенной образовался через несколько минут после Большого взрыва. Хотя основная его часть быстро превратилась в гелий, некоторое количество все же осталось, и если его измерить, то можно ответить на вопрос, замкнута ли Вселенная.

Чтобы понять почему, посмотрим, что происходило в то время. Известно, что при соударении ядер дейтерия образуется гелий. Если плотность Вселенной была высока, то соударений было много и образовалось значительное количество гелия если же плотность была низка, то осталось много дейтерия. Поскольку количество дейтерия во Вселенной со временем изменилось незначительно, измерение его должно показать, замкнута ли Вселенная.

Такие измерения, конечно же, были проделаны, и вот их результат - Вселенная не замкнута. В 70-е годы такой результат казался вполне убедительным, а когда аналогичные оценки были проделаны для гелия и совпали с данными по дейтерию, вопрос, казалось, был решен окончательно - Вселенная открыта. Однако через несколько лет ученые нашли изъян в этой аргументации. Из нее следовало лишь то, что Вселенная не может оказаться замкнутой частицами, называемыми барионами.

К барионам относятся и протоны и нейтроны, из которых состоит большинство известных нам объектов - звезды, космическая пыль, водород и даже образовавшиеся в результате коллапса звезд черные дыры. Может возникнуть вопрос а есть ли что-нибудь кроме барионов? Да, это лептоны и так называемые экзотические частицы. Лептоны чересчур легки, чтобы заметно увеличить массу, а вот экзотические частицы в последнее время привлекают к себе большое внимание. Первыми в поле зрения попали нейтрино, и в течение какого-то времени астрономы были убеждены, что эта частица поможет замкнуть Вселенную.

Нейтрино почти так же распространены, как фотоны, примерно миллиард на каждый атом вещества долгое время считалось, что их масса покоя равна нулю. Конечно, массой они все-таки обладают, ведь любая форма энергии имеет массу, но ее явно не хватит, чтобы остановить расширение Вселенной. Но вот в конце 70-х годов было высказано предположение, что нейтрино имеют массу покоя.

Как бы мала она ни была, из теорий следовало, что в целом она может внести существенный вклад в массу Вселенной. Эксперимент по проверке этого предположения был выполнен группой ученых, в которую входили Ф. Рейнес, X. Собел и Э. Пасиерб. Они не измеряли массу непосредственно, а выбрали другой путь. Ранее было обнаружено, что фактически существует три типа нейтрино - один, связанный с электроном, другой - с более тяжелой, хотя и подобной электрону частицей, называемый мюоном, а третий - с еще более тяжелой частицей, тау, обнаруженной в 1977 году. Согласно теории, все три разновидности нейтрино могут превращаться друг в друга.

Иными словами, они могут менять тип, но только в том случае, если их масса больше нуля. Рейнес, Собел и Пасиерб провели соответствующий эксперимент и пришли к выводу, что им удалось зарегистрировать переход от одного типа нейтрино к другому. Однако другие ученые, попытавшиеся повторить эксперимент, не смогли подтвердить этот результат. Стало уже казаться, что Рейнес с коллегами допустили ошибку, но тут пришло известие о том, что группе советских ученых удалось измерить массу нейтрино непосредственно.

Но и здесь не все так просто. Многие пробовали проверить полученный в СССР результат, но пока безуспешно. Вопрос о массе покоя нейтрино до сих пор остается открытым. Конечно, даже если у нейтрино не окажется массы покоя, есть другие экзотические частицы, и некоторые из них заслуживают пристального внимания. Так, предполагается, что гравитационное поле переносится гипотетическими частицами - гравитонами.

Пока они не обнаружены, но некоторые ученые убеждены в их существовании. Из теории супергравитации следует, что гравитону должно сопутствовать гравитино более того, из нее вытекает, что партнеры должны быть у всех частиц у фотона - фотино, а у W - вино. Все такие частицы-партнеры имеют общее название ино. Некоторые ученые полагают, что благодаря своей массе они могут внести существенный вклад в среднюю плотность вещества во Вселенной.

Но если даже эти частицы не подойдут для уготованной им роли или вообще не будут найдены, то есть еще один кандидат, который пока, правда, существует только на бумаге. Его называют аксионом, и он сильно отличается от ино, в частности он гораздо легче. Пока все эти частицы - лишь плод воображения ученых, но все же они привлекают серьезное внимание. Другая частица, о которой в последнее время много разговоров магнитный монополь. Это очень массивная частица с одним магнитным полюсом.

Каждый, кто знает, что такое магнит, скажет, что это невозможно. Известно, что при разрезании полосового магнита на две части получаются два магнита, каждый из которых имеет северный и южный полюсы. Разрезая такой магнит, мы будем получать тот же результат, сколько бы раз мы это не повторяли. Получить, таким образом, изолированный северный или южный магнитный полюс нельзя. Но еще в 30-е годы Дирак предсказал, что такая частица должна существовать. Многие экспериментаторы бросились проверять его теорию, но поиски монополей ни к чему не привели, и постепенно интерес к ним угас. Но вот в 1974 году сотрудник Государственного университета Утрехта в Нидерландах Дж. Хофт и независимо от него советский ученый А. Поляков показали, что существование монополей следует из некоторых единых теорий поля. Это возродило интерес к монополям, и многие возобновили их поиск.

Среди них был сотрудник Стан-фордского университета Блас Кабрера, который, проведя детальные расчеты, пришел к выводу, что можно регистрировать примерно по одному монополю в год. Он построил установку и стал ждать.

Наконец его терпение было вознаграждено 14 февраля 1982 года установка зарегистрировала первый монополь. Сообщение взбудоражило научный мир, хотя и было встречено с изрядным скептицизмом, а так как второй монополь обнаружить не удалось, скептицизма не убавлялось. Более того, другие попытки обнаружить монополи результатов не дали. Заслуживает упоминания еще один, последний кандидат.

Это особые другие черные дыры, так называемые реликтовые. Неплохими кандидатами считаются все черные дыры, которые образовались раньше дейтерия. Правда, они должны быть относительно невелики, но все-таки на их массу можно рассчитывать. Ограничения накладывает также и испарение Хокинга он показал, что все черные дыры, масса которых в момент образования была меньше 10 15 г, к настоящему времени уже должны были испариться. Отсюда следует, что внимания заслуживают только те из них, масса которых составляет от 10 15 до 10 32 г. Поскольку примерно таков диапазон масс планет, их называют планетарными черными дырами.

Если учесть вклад всех перечисленных выше видов масс, то может показаться, что суммарной массы вполне достаточно для обеспечения замкнутости Вселенной. Однако сотрудник Чикагского университета Дэвид Шрамм с этим не согласен из расчетов его группы следует, что средняя плотность вещества очень близка к пограничной - той, которая лежит на границе между замкнутой и открытой Вселенной.

Другие методы решения замкнутости Вселенной. Видимо, наиболее надежным способом ответа на вопрос, замкнута или открыта Вселенная, является точное измерение ее средней плотности, и в последнее время именно он привлекает наибольшее внимание. Но это отнюдь не единственный способ можно, например, использовать диаграмму Хаббла. Если ускорение галактик одинаково до самых дальних окраин Вселенной, то на диаграмме получится прямая если же галактики замедляются, линия будет искривлена.

По степени этого искривления можно понять, достаточно ли замедление для прекращения расширения Вселенной. Метод кажется довольно простым - достаточно построить график, охватывающий самые дальние, приграничные районы Вселенной, и определить степень искривления получившейся линии. Но как и при определении средней плотности, здесь тоже не обходится без трудностей. Уже отмечалось, что для удаленных районов Вселенной провести точные измерения очень трудно кроме того, возникают и другие проблемы.

Вглядываясь в космические дали, мы заглядываем в прошлое, а значит, видим галактики такими, какими они были давным-давно. При этом, естественно, возникают вопросы, связанные с эволюцией Вселенной как эти галактики выглядят сегодня, насколько они изменились? Из многих теорий следует, что галактики в особенности эллиптические раньше были гораздо ярче, т. е. нам представляется, что они находятся ближе, чем на самом деле. Из других же теорий вытекает, что некоторые галактики могут расти, поглощая соседние, а потому сейчас они гораздо ярче, чем в прошлом, и значит, кажутся нам расположенными дальше.

Исследование дальних границ Вселенной дает много свидетельств процесса эволюции. За некоторым пределом наблюдаются уже только радиогалактики, а на самых окраинах видны только квазары. Попытка использовать эти объекты для нанесения точек на диаграмму Хаббла совершенно бессмысленна такие точки оказываются далеко в стороне от прямой, соответствующей обычным галактикам.

Более того, раз точно не известно, что такое квазары, вряд ли можно ожидать от них помощи. Поскольку они так далеки и имеют небольшой возраст, то, вероятно, могут являться первичными формами галактик, хотя с таким представлением согласны очень немногие астрономы. Еще один метод решения нашей проблемы основан на так называемом подсчете чисел. Как и в предыдущих случаях, основная идея проста, но, к сожалению, приводит к неоднозначным результатам. Нужно лишь подсчитать в заданном направлении, насколько хватит глаз, количество галактик или объектов других типов, а затем построить график зависимости числа зарегистрированных объектов от расстояния.

Таким образом, можно определить глобальную кривизну если она положительна, Вселенная замкнута, а если отрицательна - открыта. В плоской Вселенной точки на построенном графике были бы распределены равномерно по всем направлениям и для всех расстояний. При положительной кривизне следует ожидать избытка точек в близких районах, а при отрицательной - напротив, их недостатка.

Широкомасштабные исследования, проведенные в 70-х годах в Университете штата Огайо, казалось бы, продемонстрировали избыток точек, а значит, и замкнутость Вселенной, однако недавние проверки не подтверждают этого вывода. Заслуживает упоминания и метод определения угловых размеров. Суть его состоит в тщательном измерении диаметра галактик конкретного вида затем аналогичное измерение производится для другой галактики того же типа, расположенной гораздо дальше, но на известном расстоянии.

Если пространство искривлено, то в измерение диаметра как бы вносится ошибка - его величина будет казаться больше при положительной кривизне и меньше при отрицательной.

– Конец работы –

Эта тема принадлежит разделу:

Начало и конец Вселенной

Человеку трудно представить себе необъятные просторы Вселенной, протекающие в ней сложные и мощные процессы приводят нас в трепет. Свет от некоторых видимых объектов шел к Земле миллионы лет, а ведь расстояние… Но это не так. Все в этом мире изменяется и Вселенная не исключение. Но было ли у Вселенной начало и будет ли конец?…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Скрытая масса

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Назад к Большому взрыву
Назад к Большому взрыву. Чтобы вернуться к самому началу, нужно знать возраст Вселенной. А это очень сложный и спорный вопрос. Долгие годы считалось, что возраст Вселенной составляет примерн

Абсолютная сингулярность
Абсолютная сингулярность. Вселенская сингулярность или состояние близкое к ней, о чёрной дыре. В отличие от черный дыр, которые имеют массу, равную массе крупной звезды теперь же речь идет о

Эпоха адронов
Эпоха адронов. Через 10 -23 с Вселенная вступила в эпоху адронов, или тяжелых частиц. Поскольку адроны участвуют в сильных взаимодействиях, эту эпоху можно назвать эпохой сильных взаимодействий.

Эпоха лептонов
Эпоха лептонов. Примерно через сотую долю секунды после Большого взрыва, когда температура упала до 100 миллиардов градусов, Вселенная вступила в эпоху лептонов. Теперь она походила на густой суп и

Эпоха излучения
Эпоха излучения. Через несколько секунд после Большего взрыва, когда температура составляла около 10 миллиардов градусов, Вселенная вступила в эпоху излучения. В начале этой эпохи было еще довольно

Эпоха галактик
Эпоха галактик. После отрыва излучения от вещества Вселенная по-прежнему состояла из довольно однородной смеси частиц и излучения. В ней уже содержалось вещество, из которого впоследствии об

Дальнейшая судьба Вселенной
Дальнейшая судьба Вселенной. Вопрос о дальнейшей судьбе Вселенной - несомненно, важная часть полной единой теории. Теория Фридмана - просто одна из ее составляющих единая теория обязана идти

Судьба замкнутой Вселенной
Судьба замкнутой Вселенной. Вероятно, Вселенная так близка к водоразделу, что, обсуждая ее дальнейшую судьбу, приходится рассматривать как открытый, так и замкнутый варианты. Для начала, предположи

Судьба открытой Вселенной
Судьба открытой Вселенной. В противоположность замкнутой, открытая Вселенная продолжает расширяться вечно. Основным отличием от процессов, описанных в предыдущем разделе, является разница во времен

Словарь терминов
Словарь терминов. Абсолютный нуль температуры - самое низкое из все возможных значений температуры. При абсолютном нуле вещество не обладает тепловой энергией. Аннигиляция - процесс, при кот

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги