рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Границы применимости

Границы применимости - раздел Биология, Ньютоновская и эволюционная парадигма в естествознание Границы Применимости. Вследствие Развития Физики В Начале Xx Века Опре...

Границы применимости.

Вследствие развития физики в начале XX века определилась область применения классической механики: ее законы выполняются для движений, скорость которых много меньше скорости света. Было установлено, что с ростом скорости масса тела возрастает. Вообще законы классической механики Ньютона справедливы для случая инерциальных систем отсчета. В случае неинерциальных систем отсчета ситуация иная. При ускоренном движении неинерциальной системы координат относительно инерциальной системы первый закон Ньютона (закон инерции) в этой системе не имеет места, – свободные тела в ней будут с течением времени менять свою скорость движения.

Первое несоответствие в классической механике было выявлено, тогда когда был открыт микромир. В классической механике перемещения в пространстве и определение скорости изучались вне зависимости от того, каким образом эти перемещения реализовывались. Применительно к явлениям микромира подобная ситуация, как выявилось, невозможна принципиально.

Здесь пространственно-временная локализация, лежащая в основе кинематики, возможна лишь для некоторых частных случаев, которые зависят от конкретных динамических условий движения. В макро масштабах использование кинематики вполне допустимо. Для микро масштабов, где главная роль принадлежит квантам, кинематика, изучающая движение вне зависимости от динамических условий, теряет смысл. Для масштабов микромира и второй закон Ньютона оказался несостоятельным – он справедлив лишь для явлений большого масштаба. Выявилось, что попытки измерить какую-либо величину, характеризующую изучаемую систему, влечет за собой неконтролируемое изменение других величин, характеризующих данную систему: если предпринимается попытка установить положение в пространстве и времени, то это приводит к неконтролируемому изменению соответствующей сопряженной величины, которая определяет динамическое состояние системы.

Так, невозможно точно измерить в одно и то же время две взаимно сопряженные величины. Чем точнее определяется значение одной величины, характеризующей систему, тем более неопределенным оказывается значение сопряженной ей величины.

Это обстоятельство повлекло за собой существенное изменение взглядов на понимание природы вещей. Несоответствие в классической механики исходило из того, что будущее в известном смысле полностью содержится в настоящем – этим и определяется возможность точного предвидения поведения системы в любой будущий момент времени.

Такая возможность предлагает одновременное определение взаимно сопряженных величин. В области микромира это оказалось невозможным, что и вносит существенные изменения в понимание возможностей предвидения и взаимосвязи явлений природы: раз значение величин, характеризующих состояние системы в определенный момент времени, можно установить лишь с долей неопределенности, то исключается возможность точного предсказания значений этих величин в последующие моменты времени, т.е. можно лишь предсказать вероятность получения тех или иных величин. Другое открытие пошатнувшее устои классической механики, было создания теории поля. Классическая механика пыталась свести все явления природы к силам, действующим между частицами вещества, – на этом основывалась концепция электрических жидкостей.

В рамках этой концепции реальными были лишь субстанция и ее изменения – здесь важнейшим признавалось описание действия двух электрических зарядов с помощью относящихся к ним понятий. Описание же поля между этими зарядами, а не самих зарядов было весьма существенным для понимания действия зарядов.

Вот простой пример нарушения третьего закона Ньютона в таких условиях: если заряженная частица удаляется от проводника, по которому течет ток, и соответственно вокруг него создано магнитное поле, то результирующая сила, действующая со стороны заряженной частицы на проводник с током в точности равна нулю. Созданной новой реальности места в механической картине мира не было. В результате физика стала иметь дело с двумя реальностями – веществом и полем.

Если классическая физика строилась на понятии вещества, то с выявлением новой реальности физическую картину мира приходилось пересматривать. Попытки объяснить электромагнитные явления с помощью эфира оказалось несостоятельными. Эфир экспериментально обнаружить не удалось. Это привело к созданию теории относительности, заставившей пересмотреть представления о пространстве и времени, характерные для классической физики.

Таким образом, две концепции – теория квантов и теория относительности – стали фундаментом для новых физических концепций. 2. Современная модель эволюции Вселенной. Наиболее общепринятой в космологии является модель однородной изотропной нестационарной горячей расширяющейся Вселенной, построенная на основе общей теории относительности и релятивист¬ской теории тяготения, созданной Альбертом Эйнштейном в 1916 го¬ду. В основе этой модели лежат два предположения: 1) свойства Все¬ленной одинаковы во всех ее точках (однородность) и направления (изотропность); 2) наилучшим известным описанием гравитацион¬ного поля являются уравнения Эйнштейна.

Из этого следует так на¬зываемая кривизна пространства и связь кривизны с плотностью массы (энергии). Космология, основанная на этих постулатах, — ре¬лятивистская. Важным пунктом данной модели является ее нестационар¬ность. Это определяется двумя постулатами теории относительнос¬ти: 1) принципом относительности, гласящим, что во всех инерцион¬ных системах все законы сохраняются вне зависимости от того, с ка¬кими скоростями, равномерно и прямолинейно движутся эти системы друг относительно друга; 2) экспериментально подтверж¬денным постоянством скорости света.

Из принятия теории относительности вытекало в качестве следствия (первым это заметил петроградский физик и математик Александр Александрович Фридман в 1922 году), что искривленное пространство не может быть стационарным: оно должно или расши¬ряться, или сжиматься.

На этот вывод не было обращено внимания вплоть до открытия американским астрономом Эдвином Хабблом в 1929 году так называемого «красного смещения». Красное смещение — это понижение частот электромагнит¬ного излучения: в видимой части спектра линии смещаются к его красному концу. Обнаруженный ранее эффект Доплера гласил, что при удалении от нас какого-либо источника колебаний, восприни¬маемая нами частота колебаний уменьшается, а длина волны соот¬ветственно увеличивается. При излучении происходит «покрасне¬ние», т. е. линии спектра сдвигаются в сторону более длинных крас¬ных волн. Так вот, для всех далеких источников света красное смещение было зафиксировано, причем, чем дальше находился источник, тем в большей степени.

Красное смещение оказалось пропорционально расстоянию до источника, что и подтверждало гипотезу об удалении их, т. е. о расширении Метагалактики — видимой части Вселенной. Красное смещение надежно подтверждает теоретический вы¬вод о нестационарности области нашей Вселенной с линейными разме¬рами порядка нескольких миллиардов парсек на протяжении по мень¬шей мере нескольких миллиардов лет. В то же время кривизна прост¬ранства не может быть измерена, оставаясь теоретической гипотезой.

Составной частью модели расширяющейся Вселенной явля¬ется представление о Большом Взрыве, происшедшем где-то при¬мерно 12 —18 млрд. лет назад. «Вначале был взрыв. Не такой взрыв, который знаком нам на Земле и который начинается из определенно¬го центра и затем распространяется, захватывая все больше и боль¬ше пространства, а взрыв, который произошел одновременно везде, заполнив с самого начала все пространство, причем каждая частица материи устремилась прочь от любой другой частицы» (Вейнберг С. Первые три минуты.

Современный взгляд на происхождение Все¬ленной М 1981 С. 30). Начальное состояние Вселенной (так называемая сингуляр¬ная точка): бесконечная плотность массы, бесконечная кривизна пространства и взрывное, замедляющееся со временем расширение при высокой температуре, при которой могла существовать только смесь элементарных частиц (включая фотоны и нейтрино). Горячесть начального состояния подтверждена открытием в 1965 году реликтового излучения фотонов и нейтрино, образовавшихся на ранней стадии расширения Вселенной.

Возникает интересный вопрос: из чего же образовалась Все¬ленная? Чем было то, из чего она возникла. В Библии утверждается, что Бог создал все из ничего. Зная, что в классической науке сформу¬лированы законы сохранения материи и энергии, религиозные фи¬лософы спорили о том, что значит библейское «ничего», и некоторые в угоду науке полагали, что под ничем имеется в виду первоначаль¬ный материальный хаос, упорядоченный Богом. Как это ни удивительно, современная наука допускает (именно допускает, но не утверждает), что все могло создаться из ничего. «Ни¬чего» в научной терминологии называется вакуумом.

Вакуум, кото¬рый физика XIX века считала пустотой, по современным научным представлениям является своеобразной формой материи, способной при определенных условиях «рождать» вещественные частицы.

Современная квантовая механика допускает (это не противо¬речит теории), что вакуум может приходить в «возбужденное состо¬яние», вследствие чего в нем может образоваться поле, а из него (что подтверждается современными физическими экспериментами) — вещество. Рождение Вселенной «из ничего» означает с современной на¬учной точки зрения ее самопроизвольное возникновение из вакуума, когда в отсутствии частиц происходит случайная флуктуация.

Если число фотонов равно нулю, то напряженность поля не имеет опреде¬ленного значения (по «принципу неопределенности» Гейзенберга): поле постоянно испытывает флуктуации, хотя среднее (наблюдае¬мое) значение напряженности равно нулю. Флуктуация представляет собой появление виртуальных час¬тиц, которые непрерывно рождаются и сразу же уничтожаются, но так же участвуют во взаимодействиях, как и реальные частицы.

Благодаря флуктуациям, вакуум приобретает особые свойства, про¬являющиеся в наблюдаемых эффектах. Итак, Вселенная могла образоваться из «ничего», т. е. из «воз¬бужденного вакуума». Такая гипотеза, конечно, не является решаю¬щим подтверждением существования Бога. Ведь все это могло про¬изойти в соответствии с законами физики естественным путем без вмешательства извне каких-либо идеальных сущностей. И в этом случае научные гипотезы не подтверждают и не опровергают рели¬гиозные догмы, которые лежат по ту сторону эмпирически под¬тверждаемого и опровергаемого естествознания.

На этом удивительное в современной физике не кончается. Отвечая на просьбу журналиста изложить суть теории относитель¬ности в одной фразе, Эйнштейн сказал: «Раньше полагали, что если бы из Вселенной исчезла вся материя, то пространство и время со¬хранились бы; теория относительности утверждает, что вместе с материей исчезли бы также пространство и время». Перенеся этот вывод на модель расширяющейся Вселенной, можно заключить, что до образования Вселенной не было ни пространства, ни времени.

Отметим, что теория относительности соответствует двум разновидностям модели расширяющейся Вселенной. В первой из них кривизна пространства-времени отрицательна или в пределе равна нулю; в этом варианте все расстояния со временем неограни¬ченно возрастают. Во второй разновидности модели кривизна поло¬жительна, пространство конечно, и в этом случае расширение со временем заменяется сжатием. В обоих вариантах теория относи¬тельности согласуется с нынешним эмпирически подтвержденным расширением Вселенной.

Досужий ум неизбежно задается вопросами: что же было тог¬да, когда не было ничего, и что находится за пределами расшире¬ния. Первый вопрос, очевидно, противоречив сам по себе, второй выходит за рамки конкретной науки. Астроном может сказать, что как ученый он не вправе отвечать на такие вопросы. Но поскольку они все же возникают, формулируются и возможные обоснования ответов, которые являются не столько научными, сколько натур¬философскими.

Так, проводится различие между терминами «бесконечный» и «безграничный». Примером бесконечности, которая не безгранична, служит поверхность Земли: мы можем идти по ней бесконечно долго, но тем не менее она ограничена атмосферой сверху и земной корой снизу. Вселенная также может быть бесконечной, но ограниченной. С другой стороны, известна точка зрения, в соответствии с которой в материальном мире не может быть ничего бесконечного, потому что он развивается в виде конечных систем с петлями обратной связи, которыми эти системы создаются в процессе преобразования среды.

Но оставим эти соображения области натурфилософии, по¬тому что в естествознании в конечном счете критерием истины яв¬ляются не абстрактные соображения, а эмпирическая проверка гипотез.

– Конец работы –

Эта тема принадлежит разделу:

Ньютоновская и эволюционная парадигма в естествознание

Учения Декарта и Ньютона отбросили один очень важный момент - фигуру Бога. Рационально-меха¬нистический образ мира, сформировавшийся в трудах… Механистическая Вселенная Ньютона состоит из атомов - маленьких неделимых… Это пространство аб¬солютно, постоянно и всегда находится в покое. Оно пред¬ставляет собой большое вместилище тел,…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Границы применимости

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Законы движения Ньютона
Законы движения Ньютона. Если кинематика изучает движение геометрического тела, который не обладает никакими свойствами материального тела, кроме свойства занимать определенное место в пространстве

Основная задача механики
Основная задача механики. Результатом развития классической механики явилось создание единой механической картины мира, в рамках которой все качественное многообразие мира объяснялось различиями в

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги