рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Гравитационные линзы и коричневые карлики

Гравитационные линзы и коричневые карлики - раздел Биология, Основные представления о специальной и общей теории относительности Гравитационные Линзы И Коричневые Карлики. И Наконец, Сюжет, Еще Более Свежий...

Гравитационные линзы и коричневые карлики. И наконец, сюжет, еще более свежий, чем пульсар PSR 1913+16. Он тесно связан, однако, с идеей, возникшей еще на заре ОТО. В 1919 году Эддингтон и Лодж независимо заметили, что, поскольку звезда отклоняет световые лучи, она может рассматриваться как своеобразная гравитационная линза.

Такая линза смещает видимое изображение звезды-источника по отношению к ее истинному положению.

Первая наивная оценка может привести к выводу о полной безнадежности наблюдения эффекта. Из простых соображений размерности можно было бы заключить, что изображение окажется сдвинутым на угол порядка rg /d, где rg — гравитационный радиус линзы, а d — характерное расстояние в задаче. Даже если взять в качестве линзы скопление, состоящее из 104 звезд, а для расстояния принять оценку d~10 световых лет, то и тогда этот угол составил бы всего 10-10 радиан.

Разрешение подобных углов практически невозможно. Однако такая наивная оценка просто неверна. Это следует, в частности, из исследования простейшего случая соосного расположения источника S, линзы L и наблюдателя O (рис. 2). Задача эта была рассмотрена в 1924 году Хвольсоном (профессор Петербургского университета, автор пятитомного курса физики, широко известного в начале века) и спустя 12 лет Эйнштейном.

Обратимся к ней и мы. Ясно, что для всякого расстояния d1 между источником и линзой, d — между линзой и наблюдателем для любого гравитационного радиуса rg линзы (звезды или скопления звезд) найдется такое минимальное расстояние ρ между лучом из источника и линзой, при котором этот луч попадает в приемник. При этом изображения источника заполняют окружность, которую наблюдатель видит под углом φ Углы φ и θ1 малы, так что φ=h/d,φ1=h/d а, кроме того, h=ρ Отсюда легко находим С другой стороны, для θ справедлива, очевидно, формула (8). Таким образом, И наконец, интересующий нас угол составляет Таким образом, правильный порядок величины угловых размеров изображения не rg /d, а √rg/d (мы считаем здесь, что все расстояния по порядку величины одинаковы). Он оказался намного больше первой, наивной, оценки, и это радикально меняет ситуацию с возможностью наблюдения эффектов гравитационных линз. Изображение источника в виде окружности (ее принято называть кольцом Эйнштейна), создаваемое гравитационной линзой при аксиально-симметричном расположении, реально наблюдалось.

Сейчас известно несколько источников в радиодиапазоне, которые выглядят именно так, кольцеобразно.

Если, однако, гравитационная линза не лежит на прямой, соединяющей источник с наблюдателем, картина оказывается иной. В случае сферически-симметричной линзы возникают два изображения (рис. 3), одно из которых лежит внутри кольца Эйнштейна, соответствующего осесимметричной картине, а другое — снаружи.

Подобные изображения также наблюдались, они выглядят как двойные квазары, как квазары-близнецы. Если источник движется, то перемещаются и оба изображения. Пока яркости обоих сравнимы с яркостью источника, для оценки углового расстояния между ними можно по-прежнему использовать выражение (10). Если масса звезды, действующей в качестве линзы, невелика, скажем на два — три порядка величины меньше массы Солнца, то разрешить такой угол между изображениями, ~0,001", практически немыслимо.

Тем не менее обнаружить подобное явление можно. Дело в том, что при сближении изображений их суммарная яркость растет. Явление это, так называемое микролинзирование, имеет достаточно специфический характер: рост яркости и ее последующее падение происходят симметрично во времени, причем изменение яркости происходит одинаково на всех длинах волн (угол отклонения (10) не зависит от длины волны). Поиски микролинзирования, которые велись на протяжении нескольких лет двумя группами астрономов, австралийско-американской и французской, не просто привели к обнаружению эффекта.

Таким образом был открыт новый класс небесных тел: слабосветящиеся карликовые звезды, так называемые коричневые карлики, именно они играют роль микролинз. Все это произошло совсем недавно. Если еще в январе 1994 года было известно лишь два — три подобных события, то в настоящее время они уже исчисляются десятками.

Поистине первоклассное открытие в астрономии. 2

– Конец работы –

Эта тема принадлежит разделу:

Основные представления о специальной и общей теории относительности

Содержанием теории относительности является физическая теория пространства и времени, учитывающая существующую между ними взаимосвязь… Название же “принцип относительности” или “постулат относительности”, возникло… Дело в том, что к началу двадцатого века у физиков, строивших теорию оптических и электромагнитных явлений по аналогии…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Гравитационные линзы и коричневые карлики

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Принцип эквивалентности и геометризация тяготения
Принцип эквивалентности и геометризация тяготения. Факт этот по существу был установлен еще Галилеем. Он хорошо известен каждому успевающему старшекласснику: все тела движутся в поле тяжести

Классические опыты по проверке ОТО
Классические опыты по проверке ОТО. В начале предыдущего раздела уже отмечалось, что гравитационное поле влияет на движение не только массивных тел, но и света. В частности, фотон, распространяясь

Эйнштейновский принцип относительности
Эйнштейновский принцип относительности. Специальная теория относительности (СТО) наряду с предположением о том, что a) пространство - трёхмерно, однородно и изотропно, (что означает, что в простран

Замедление времени
Замедление времени. Рассмотрим часы, покоящиеся в начале координат движущейся системы (x = 0), которые перемещаются относительно лабораторной системы координат со скоростью V, так что и

Лоренцево сокращение длины
Лоренцево сокращение длины. Стержень, расположенный вдоль оси 0X движущейся системы отсчета и покоящийся в ней, имеет длину l0. Если один из концов стержня (для простоты) со

Динамика специальной теории относительности
Динамика специальной теории относительности. Энергия и импульс частицы Под массой частицы m будем понимать ее массу, измеряемую в системе покоя частицы - массу покоя. Релятивистским импульсом части

Релятивистские преобразования энергии и импульса
Релятивистские преобразования энергии и импульса. Рассмотрим вновь две инерциальные системы отсчета, движущиеся друг относительно друга со скоростью V в направлении оси x. Закон преобразования для

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги