рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Перспективы развития компьютерной техники

Работа сделанна в 2003 году

Перспективы развития компьютерной техники - Реферат, раздел Биология, - 2003 год - Институт Государственного И Муниципального Управления Ноу Мубинт Реферат По К...

Институт государственного и муниципального управления НОУ МУБиНТ Реферат по курсу ”Концепция современного естествознания” Выполнил: слушатель группы З-21 Копылов О.В. Проверил: к.х.н доцент Будний Игорь Владимирович Ярославль, 2003 Тема: Перспективы развития компьютерной техники Содержание: 1. Вступление 2. Квантовый компьютер 3. Нанотехнологии 4. Компьютеры на основе ДНК 5. Искусственный интеллект 6. Заключение Проблема — не в новых идеях, а в том, чтобы избавиться от старых, которые врастают в тех, кого воспитывали, как воспитывали большинство из нас, в каждый уголок наших умов. Джон М. Кинз В одном из интервью вскоре после получения Нобелевской премии Жорес Алферов сказал: «Мне по-своему жаль новое поколение. Ведь, если разобраться, уже все открыто.

Так что в новом веке вам будет делать нечего — так, частностями заниматься». От этих слов одного из отцов современной полупроводниковой электроники становится немного жутко.

Значит, предел уже положен и стена темнеет на горизонте? Через пару десятков лет прогресс человечества будет навсегда остановлен одним из незыблемых постулатов Вселенной. «Как навсегда? — спросите вы. — Пройдет сто лет, тысяча, и принципиально ничего не изменится? Ну нет! Не может такого быть!» Однако, как это ни грустно, там, где действительно достигнем физических пределов, мы не сможем продвинуться дальше ни на шаг. Мы бессильны перед законами природы, никакие наши приборы и опыты, молитвы и приказы не заставят их отступить ни на йоту. Уже в ближайшие годы святейшая догма мира высоких технологий — закон Мура. В 1965 г соучредитель фирмы Intel Гордон Мур предсказал, что плотность транзисторов в интегральных схемах будет удваиваться каждый год Позднее его прогноз, названный законом Мура, был скорректирован на 18 месяцев.

В течение трех последних десятилетий закон Мура выполнялся с замечательной точностью. Не только плотность транзисторов, но и производительность микропроцессоров удваивается каждые полтора года (об удвоении плотности транзисторов в процессорах каждые полтора года) станет просто занимательным историческим фактом. Полупроводниковые технологии отживают свое — сейчас очевидно, что частоту в 30—40 ГГц они не перешагнут никогда.

Бешеная гонка за тактовой частотой заставит нас научиться считать на атомах и молекулах — это и станет концом эволюции нашей цивилизации. Современная физика жестко и однозначно говорит, что путешествовать к звездам или перемещаться в пространстве с помощью телепортации мы никогда не сможем, если в доступной нам части реальности мы и в самом деле уже открыли абсолютно все. Но у нас есть повод оставаться оптимистами: ведь ни один закон и постулат не запрещают появление принципиально нового знания! Так, в 1894 г. знаменитый физик Альберт А. Майкельсон (экспериментально доказавший отсутствие эфира) писал: «Наиболее важные фундаментальные законы и факты физической науки открыты, и они сейчас установлены так твердо, что возможность их когда-нибудь заменить чем-то новым вследствие новых открытий крайне мала Наши будущие открытия нужно искать в шестом знаке после запятой». Не правда ли, напоминает слова Ж. Алферова? Но буквально через год Рентген открыл пронизывающие материю лучи, через два — Беккерель обнаружил явление радиоактивности, через три — Томпсон ввел понятие электрона.

Первые 30 лет XX в. принесли теорию относительности Эйнштейна, открытие атомного ядра Резерфордом, квантовую теорию и доказательство расширения Вселенной.

Майкельсон умер в 1931 г так что он еще успел поразиться столь быстрому изменению взглядов на мир. В 1894 г. мы знали все, в 1931-м — почти ничего Не ждут ли нас в начале XXI в. столь же блестящие откровения природы, как и сто лет назад? В свое время люди верили, что самолет никогда не сможет преодолеть звуковой барьер, так как это должно его разрушить.

Но октябрьским утром 1947 г. мир впервые услышал столь привычный сейчас любому летчику хлопок — Чак Инджер на экспериментальном истребителе сумел обогнать звук. Скромного калужского учителя физики Циолковского, разработавшего в начале века проект полета в космос с помощью реактивного двигателя, все считали в лучшем случае наивным мечтателем (а чаще просто сумасшедшим). Но прошло всего полвека, и первые ракеты взмыли в небо, доказав, что скепсис в отношении творческих возможностей человечества совершенно неуместен.

В этом реферате мне хотелось бы описать те перспективы, которые открывает перед нами дальнейшее развитие технологии на имеющейся теоретической базе. Из множества футуристических направлений я опишу всего несколько, но наиболее многообещающих и интересных.

Мы увидим, каким ярким и необычным может оказаться наше будущее даже с учетом все тех же объективных пределов. И не стоит это воспринимать просто как занимательную сказку: сравните наши достижения в начале XIX и XX вв. — вы поймете, что самые смелые прогнозы (если они не противоречат фундаментальным законам природы) рано или поздно становятся реальностью.

Квантовый компьютер В 1982 г. Ричард Фейнман (лауреат Нобелевской премии 1965 г. за работы по квантовой электродинамике) опубликовал статью, в которой поднял очень важную, ранее обойденную вниманием ученых проблему. Прогресс человеческой цивилизации второй половины XX в. целиком связан с успехами в области электроники. С каждым годом процессоры в компьютерах становятся все производительнее (так, плата современных наручных часов является куда более мощным вычислительным устройством, чем созданный в 1946 г. 30-тонный ламповый «Эниак»), а их структурные элементы — меньше.

Но до каких пор сможет продолжаться эта начатая более полувека назад гонка? Пока теоретическим пределом является передача бита информации при помощи одного электрона, локализованного на одном атоме. Это позволит увеличить тактовую частоту примерно до терагерца (или тысячи гигагерц) — в общем, весьма неплохая перспектива.

Однако специалисты, приводящие подобные цифры, не учитывают одного факта. Преодолев порог миниатюризации в десяток нанометров (сейчас выпускаются процессоры по 130-нанометровой технологии), мы попадем в необычный, совершенно непохожий на наш, мир квантовых законов. Особенностью квантовой реальности является ее принципиальная нелокальность и неопределенность: классический бит наших компьютеров, будучи представлен на квантовом уровне одним электроном, как бы «размажется», оказываясь одновременно в двух состояниях, к которым можно применить только вероятностный подход, но нельзя однозначно утверждать, что данная единица информации равна 0 или 1. Если говорить корректнее, то описывающая на квантовом уровне электрон волновая функция, согласно принципу суперпозиции, представляет собой линейную комбинацию всех его состояний (точнее — собственных функций), соответствующих классическому биту. Следовательно, используемые сейчас вычислительные схемы неизбежно перестают работать.

Описанное явление, называемое квантовым шумом, представляет собой объективную преграду для дальнейшего развития полупроводниковых технологий (экстраполяция закона Мура показывает, что предел наступит уже в ближайшие 10 лет). Таким образом, тактовая частота в 1 ТГц для традиционной электроники абсолютно недостижима Однако выход из тупика имеется, причем обеспеченный именно тем, из-за чего мы в нем оказались, — квантовой природой вещества.

Исторический призыв Ричарда Фейнмана ответить на вопрос, какие преимущества могут дать вычислительные системы на квантовых элементах, привлек в эту область множество талантливых ученых, что обеспечило ее быстрый прогресс.

На сегодняшний день для построения квантового компьютера сделано так много, что можно смело прогнозировать начало его промышленного выпуска уже в первой четверти наступившего века. Вопреки досужему мнению, при решении большинства задач квантовый компьютер не будет работать быстрее традиционного.

Более того, на выполнение одного рабочего хода (понятие тактовой частоты к нему неприменимо) ему понадобится существенно больше времени. Однако для квантового бита (кубита) характерно понятие суперпозиции: кубит в одну единицу времени равен и 0, и 1, а классический бит — либо 0, либо 1. Подобное свойство квантовых частиц одновременно находиться в нескольких состояниях обеспечивает параллелизм квантовых вычислений, что делает их в ряде задач эффективнее используемых сейчас технологий.

Например, если квантовая память состоит из двух кубитов, то мы потенциально можем одновременно (!) работать со всеми ее состояниями: 00, 01, 10, 11. Таким образом, если в полупроводниковом процессоре одна операция может изменить до L переменных, то в квантовом регистре преобразуется до 2L-1 переменных. А из этого следует, что в случае задачи, идеально использующей его специфику, квантовый компьютер будет в 2L/L раз быстрее, чем классический. На данном этапе известно всего несколько задач, решение которых облегчится с появлением квантового компьютера.

Но так как они исключительно важны, их стоит упомянуть. Исторически первым квантовым алгоритмом стал разработанный в 1995 г. американским математиком Питером Шором из Bell Labs (из ее стен вышло 12 нобелевских лауреатов по физике) алгоритм быстрой факторизации больших чисел. Его появление немало напугало банкиров и генералов от спецслужб, и вот почему. Все современные криптографические системы строятся исходя из предположения, что разложить на простые множители достаточно длинное число невозможно.

Для того чтобы решить подобную задачу для N-битового двоичного числа, современным компьютерам требуется 2N единиц времени. А квантовый компьютер, использующий алгоритм Шора, справится с ней за время N3. Так, на поиск ключа к шифру на основе разбиения на простые множители 300-разрядного числа мощнейшая из существующих ЭВМ затратила бы около миллиона лет, а на подобную работу для 1000-разрядного числа ей понадобится 1025 лет (это время в миллиарды раз превосходит возраст нашей Вселенной). Квантовому же компьютеру на то, чтобы просчитать эту задачу, достаточно всего нескольких часов.

Значительный эффект от параллелизма вычислений квантового компьютера возможен и в такой важной задаче, как организация поиска в несортированной базе данных. Созданный Ловом Гровером, коллегой Шора из Bell Labs, алгоритм в наихудшем случае для нахождения нужного объекта потребует N1/2 запросов, где N — число записей в базе. То есть если классическому компьютеру для анализа 1000 записей понадобится 1000 же логических шагов, то квантовому вычислительному устройству хватит и 30. Таким образом, количество запросов окажется значительно меньше, чем будет проанализировано переменных.

Фантастично, не правда ли? Р. Фейнман указал на возможность использования квантового компьютера для расчета параметров квантовых систем. Квантовая система — это некоторый объект, свойства и особенности которого описываются квантовыми закономерностями.

Типичная задача из этой области — расчет распределения электронной плотности в молекуле. Решить ее при помощи обычного компьютера невозможно из-за экспоненциального возрастания числа состояний системы с увеличением количества частиц. Квантовые же вычислительные устройства, используя возможность одновременной обработки большого числа переменных, будут справляться с ней с легкостью. А это позволит нам, например, моделировать молекулы лекарств, что поможет победить неизлечимые сейчас заболевания.

Огромным прорывом в области защиты информации станет организация квантовых линий связи, использующих знаменитый принцип неопределенности Гейзенберга. Он утверждает, что невозможно провести какое-либо измерение в квантовой системе, не внеся в нее изменений. А это означает, что любая попытка копирования информации из канала вызовет всплеск помех, который может быть зарегистрирован операторами. Вот, в общем-то, и все. Как видите, квантовому компьютеру пока уготована исключительно узкая специализация.

Однако вытеснить своего полупроводникового собрата у него все-таки есть шанс. Мы можем рассчитывать на широкое применение квантовых компьютеров в связи с тем, что математики умеют весьма ловко сводить алгоритмы одних типов к другим, равносложным. Так что решение проблемы искусственного интеллекта, новый уровень работы с графикой и видео, прорыв в математическом моделировании — все это может быть обеспечено появлением квантовых вычислительных систем.

Первый практический успех по построению квантового компьютера был достигнут в 1998 г. компанией IBM, сотрудники которой сумели создать двухкубитовую машину из молекулы хлороформа. Продолженные исследования позволили им объявить в 2001 г. о серьезной вехе на пути развития информационных технологий: созданный ими семикубитовый квантовый компьютер решил задачу о факторизации числа 15 при помощи алгоритма Шора, разложив его на 3 и 5. Однако лидерами в создании квантового компьютера стоит считать разработчиков из группы профессора Марка Эриксона из университета шт. Висконсин в Мэдисоне: в августе этого года они объявили о том, что им впервые удалось смоделировать архитектуру квантового компьютера на основе кремниевой технологии.

Их вычислительное устройство представляет собой массив квантовых точек в кремниево-германиевом полупроводнике; в каждой из этих точек локализован один электрон. В качестве кубита используется спин электрона. Управление системой осуществляется при помощи электростатических «затворов», при «открывании» которых электроны туннелируют.

На сегодняшний день в десятках научно-исследовательских центров по всему миру ведутся работы по реализации квантового компьютера на базе органических молекул и сверхпроводящих колец, на атомах фосфора, встроенных в кремниевую пластину, и квантовом эффекте Холла, джозефсоновском контакте и мессбауэровских ядрах. И хотя пока успехи впечатляют лишь специалистов, вера людей в победу и их целеустремленность заставляют надеяться — будущее будет выиграно нами! Нанотехнологии и молетроника Любой из известных нам предметов — всего лишь скопление атомов в пространстве.

И будет ли это алмаз или горстка пепла, булыжник или чип компьютера, труха или спелый плод, определяется только способом их упорядочивания. Расположение атомов друг относительно друга порождает такие понятия, как дешевое и драгоценное, обычное и уникальное, здоровое и больное. Наше умение упорядочивать атомы лежит в основе любой технологии.

В процессе развития цивилизации люди учились управлять все меньшими и меньшими группами атомов. Мы прошли долгий путь от каменных наконечников для стрел до процессоров, умещающихся в игольном ушке. Но наши технологии все еще грубы, и пока мы вынуждены оперировать большими, плохо управляемыми группами атомов. По этой причине наши компьютеры глупы, машины непрерывно ломаются, молекулы в наших клетках неизбежно приходят в беспорядок, уносящий сначала здоровье, а затем и жизнь.

Настоящий же прорыв в эволюции науки произойдет только тогда, когда мы научимся управлять отдельными атомами. Технологии, которые работают на уровне отдельных атомов и молекул, называются нанотехнологиями (нанометр — это 10-9 м, одна миллиардная метра). Отцом этого перспективнейшего направления считается все тот же Ричард Фейнман, прочитавший в 1959 г. историческую лекцию «Там, внизу, еще много места». В ней он сказал: «Насколько я вижу, принципы физики не запрещают манипулировать отдельными атомами Пока мы вынуждены пользоваться молекулярными структурами, которые предлагает нам природа.

Но в принципе физик мог бы синтезировать любое вещество по заданной химической формуле». Технический уровень того времени, когда были произнесены эти пророческие слова, заставлял воспринимать их как очередную футуристическую сказку. Но в 1981 г. ученые Г. Бининг и Г. Рорер из швейцарского отделения IBM создали туннельный микроскоп, впервые позволивший взглянуть на обособленные молекулы и атомы.

Однако исследователей ждал еще один приятный сюрприз: оказалось, что их детище способно не только «увидеть», но и «подцепить» отдельный атом и перенести его на другое место. За прошедшие с тех пор 20 лет нанотехнологии стали производственной реальностью, и уже сейчас мы можем создавать необходимые нам объекты, «монтируя» их на атомном уровне. Когда говорят о нанотехнологиях, подразумевается несколько достаточно разрозненных по целям и планируемому времени реализации научных направлений.

Одно из них, работающее над качественным переходом традиционной полупроводниковой электроники с микро- на наноуровень, хорошо освещено в периодической литературе. Успехи этих работ значительны уже сегодня, но, ввиду неразрешимости ряда проблем, связанных с размерными эффектами, неизбежно возникающими при достижении транзисторами величины 30—40 нм, очевидна необходимость поиска альтернативной технологии. Одним из вариантов является молекулярная электроника, или молетроника.

В 1974 г. ведущие ученые фирмы IBM А. Авирам и М. Ратнер представили вещество, молекула которого обладала теми же свойствами, что и обычный диод. Пропуская ток в одном направлении, введением дополнительного, управляющего фрагмента она могла быть усовершенствована до своеобразного молекулярного транзистора. Соединив две такие молекулы, можно получить абсолютный аналог полупроводникового триггера — основного элемента современных процессоров. «Переключать» же данное устройство, имитируя состояния бита — 0 и 1, возможно с помощью света или электрического поля. Следуя описанной идее, химики синтезировали великое множество кандидатов на роль транзистора будущего.

Так началась эпоха молетроники. Впрочем, вскоре ученые поняли, что копировать традиционный процессор совсем необязательно. Ведь теоретически в качестве бита годится любая двухуровневая система, которую относительно легко можно перевести из одного состояния в другое. Молекул же, меняющих свою структуру при определенном физико-химическом воздействии, известно немало.

Например, спиробензопирены «переключаются» в состояние 1 под действием ультрафиолета, а обратно — с помощью обычного света. На основе подобных структур реально построение не только логических элементов, но и устройств памяти. Соединять же молекулярные триггеры можно, используя либо углеродные нанотрубы, либо разработанные недавно токопроводящие полимеры (за их открытие группе ученых была вручена в 2000 г. Нобелевская премия). Если действительно удастся заменить транзисторы отдельными молекулами, то размер процессора уменьшится в сотни раз. Рост же производительности на несколько порядков позволит выпустить терагерцевые процессоры, что совершенно невозможно на базе классических кремниевых технологий. Только представьте — мощный компьютер будет умещаться на кончике волоса! Молекулярные схемы будет возможно организовать по нейроноподобному принципу, что поможет наконец добиться успеха в решении весьма застарелой проблемы «качественного искусственного интеллекта (ИИ)» Молекулярная память также оставит далеко позади свою полупроводниковую конкурентку.

По прогнозу ведущего специалиста в области молетроники, американского биохимика Мак-Алира, плотность структурных элементов в таких блоках достигнет тысяч триллионов на каждый кубический миллиметр.

А это означает, что на домашних компьютерах можно будет хранить терабайты информации. Еще более перспективно построение блоков белковой памяти, действующей по принципу запоминания, возможно используемому и человеческим мозгом.

Вероятно, такой подход позволит реализовать переселение человеческого интеллекта в компьютер. Однако для теоретической разработки этого направления мы пока слишком мало знаем о том, как все-таки работает наш мозг.

Компьютеры на основе ДНК

Это самая сложная проблема, решаемая при помощи многоступенчатой экстр... Ученые из университета Висконсина экспериментировали с другим носителе... С ее помощью они нашли решение шахматной головоломки, суть которой - р... Lipton) из Принстона первым показал возможность ДНК-кодирования двоичн... Конечно, относительно реализации полноценного ДНК-компьютера вопросов ...

Искусственный интеллект

Во-вторых, очень перспективным является построение системы ИИ на основ... Однако прогресс в данном направлении сдерживается пока тем, что мы сли... Примером простейшей эволюционной модели может служить алгоритм игры «Ж... Причем нам совершенно неважно, каким образом будет происходить обработ... В итоге мы можем создать клон этого объекта, даже не зная его внутренн...

– Конец работы –

Используемые теги: перспективы, развития, компьютерной, техники0.05

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Перспективы развития компьютерной техники

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Перспективы развития компьютерной техники
Марвин Минский Вступление Компьютеры появились очень давно в нашем мире, но только в последнее время их начали так усиленно использовать во многих… Сначала появились огромные компьютеры, которые были зачастую размером с… И компьютеры становились вс меньше и меньше по своим размерам, пока не достигли сегодняшних размеров. Современные…

Перспективы развития компьютерной техники
Марвин Минский Вступление Компьютеры появились очень давно в нашем мире, но только в последнее время их начали так усиленно использовать во многих… Сначала появились огромные компьютеры, которые были зачастую размером с… И компьютеры становились вс меньше и меньше по своим размерам, пока не достигли сегодняшних размеров. Современные…

ИССЛЕДОВАНИЕ ДОСТИГНУТОГО УРОВНЯ РАЗВИТИЯ ВИДА ТЕХНИКИ, ЭКСПЕРТИЗА ОБЪЕКТА ТЕХНИКИ НА ПАТЕНТНУЮ ЧИСТОТУ, ИССЛЕДОВАНИЕ ПАТЕНТОСПОСОБНОСТИ ОБЪЕКТА ТЕХНИКИ
Государственное образовательное учреждение... Высшего профессионального образования... Тольяттинский государственный университет...

Техника: её специфика и закономерности развития. Техника и технические науки. Философия техники
Техника как «производительные органы общественного человека» есть результат человеческого труда и развития знания и одновременно их средство. Цель и… Человек всегда был связан с техникой; он производит и использует или… Пока мы достигли зоологической стадии техники, которая действительно значительно разработана.Чем менее материальной,…

РЕФЕРАТ По дисциплине: «Информатика» на тему: «Состояние и тенденции развития компьютерной техники»
СЕВЕРО КАЗАХСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ... ИМ М КОЗЫБАЕВА... КАФЕДРА ИНФОРМАТИКИ И МАТЕМАТИКИ...

История развития компьютерной техники
Как представляются в компьютере целые числа... Целые числа могут представляться в компьютере со знаком или без... Целые числа без знака...

США: современный уровень социально-экономического развития. Характеристика современного состояния, анализ причин, перспективы развития
Список литературы. Введение.Современные США представляют собой достаточно интересный объект исследований для экономистов всего мира. Страна,… Кроме того, Америка демонстрирует сегодня еще и значительные успехи при… США, в отличие от других стран, добились значительного профицита бюджета их национальная валюта сегодня обеспечивает…

История развития компьютерной техники
Как представляются в компьютере целые числа... Целые числа могут представляться в компьютере со знаком или без... Целые числа без знака...

Компьютерная графика. Достоинства компьютерной графики. ОСНОВЫ КОМПЬЮТЕРНОЙ ГРАФИКИ
Компьютерная графика это наука предметом изучения которой является создание хранение и обработка графической информации с помощью ЭВМ... Компьютерная графика в настоящее время сформировалась как наука об аппаратном... В компьютерной графике рассматриваются следующие задачи...

Перспективы развития Гостинично-развлекательного комплекса "Карибу" г. Белоярский Ханты-мансийский автономный округ
По мере ее развития оказание гостеприимных услуг людям, оказавшимся по тем или иным причинам вне дома (вне своего «замкнутого пространства»),… Индустрия гостеприимства – это бизнес, направленный на обеспечение приезжих… Индустрия гостеприимства объединяет все родственные отрасли экономики, специализирующиеся на обслуживании…

0.03
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам
  • НАТО: перспективы развития Сьогодн виникли нов загрози водночас з явилися нов перспективи у вигляд нових можливостей. Найголовншою такою перспективою ункальна можливсть вперше в стор людства… Створення Альянсу як вйськового союзу було обумовлено чтко артикульованними й довгий час незмнними погрозами, причому…
  • Современное состояние и перспективы развития информационных технологий в экономике Образовавшийся в результате жизнеспособный гибрид ознаменовал революционный скачок в истории информационных технологий, которая насчитывает сотни… Человечество вынуждено мириться с этой жестокой платой за свое развитие, но… Поэтому развитие ИТ было предопределено самим развитием и усложнением антропогенной части мира. По своему первому…
  • Правовые основы создания и деятельности Евразийского экономического сообщества, перспективы развития Обострение технологических, энергетических, экологических проблем мирового хозяйства не обошло стороной и государства с бывшей плановой экономикой,… Все это затрудняет эффективное включение экономики наших стран в… Между тем в мировом хозяйстве усиливается тенденция к глобализации, принципиально изменяется практика международного…
  • Банковская система Республики Беларусь: проблемы и перспективы развития Ведь банки - это одно из центральных звеньев системы рыночных структур.Развитие их деятельности - необходимое условие реального создания рыночного… Банки - это предприятия, присущие любой нормально функционирующей… Находясь в центре экономической жизни, обслуживая интересы производителей, банки опосредуют связи между…
  • Перспективы развития туризма в Приморье Туризм по праву считается одним из крупнейших, высокодоходных и наиболее динамично развивающихся отраслей экономики, являясь активным источником… Помимо влияния на экономику многих стран, международный туризм воздействует на… Поэтому неслучайно, что интерес к этой деятельности возрастает с каждым годом, вовлекая в нее практически все страны…