Положительная и отрицательная обратная связь во время изменений проводимости

Положительная и отрицательная обратная связь во время изменений проводимости. Главным свойством натриевой и калиевой проводимостей, определяющим характер токов во время потенциала действия, является их потенциалзависимость: вероятность открытия ионных каналов увеличивается с деполяризацией мембранного потенциала.

Деполяризация увеличивает натриевую проводимость, а также, с некоторой задержкой, калиевую.

Воздействие деполяризации на натриевую проводимость носит регенеративный характер: сначала небольшая деполяризация увеличивает количество открытых каналов; ионы натрия, входящие в клетку по направлению своего электрохимического градиента, производят дальнейшую деполяризацию мембраны, открытие большего количества каналов, что влечет за собой вход еще большего числа ионов, и так далее.

Такой самоусиливающийся процесс характеризуется положительной обратной связью. Потенциал зависимость калиевых каналов, наоборот, характеризуется наличием отрицательной обратной связи. При деполяризации количество открытых калиевых каналов возрастает, и ионы калия входят в клетку в направлении электрохимического градиента.

Однако, вход калия не усиливает деполяризацию, а ведет к реполяризации и возвращению калиевой проводимости в состояние покоя. 2.3 Измерения проводимости То, что до сих пор обсуждалось, было предложено Ходжкином, Хаксли и Катцем и детально разработано Ходжкином и Хаксли, которые поставили элегантные опыты на гигантском аксоне кальмара. Они экспериментально показали, что при потенциале действия происходят изменения калиевой и натриевой проводимостей, и что последовательность этих изменений в точности определяет временной ход и величину потенциала действия.

На основании каких опытов был сделан этот вывод? На первый взгляд, измерение натриевой (gNa) и калиевой (gк) проводимостей кажется простой задачей. Нужно только измерить величину тока (I), протекающего через мембрану при том или ином потенциале (Vm), поскольку: Однако, прежде необходимо решить две проблемы. Во-первых, ток, протекающий через мембрану, приведет к изменению мембранного потенциала; это, в свою очередь, вызовет изменение проводимостей.

Решение было найдено путем разработки метода, позволяющего быстро устанавливать заданный мембранный потенциал и поддерживать его на постоянном уровне, при этом измеряя величину и временной ход мембранного тока. Поскольку потенциал фиксирован в течение всего времени эксперимента, ток будет аккуратно отражать изменения проводимости мембраны. Вторая проблема состоит в том, чтобы разделить различные компоненты мембранного тока для того, чтобы измерить их индивидуальные характеристики.

Для преодоления этого затруднения применялись различные методы, в том числе замена натрия на ион, не проникающий через мембрану, а позднее использовались селективные токсины и яды. Вывод Потенциал действия является результатом быстрого и значительного увеличения натриевой проводимости мембраны. Вход большого количества ионов хлора и аккумуляция положительного заряда на внутренней поверхности мембраны клетки сдвигает мембранный потенциал в направлении ENa. Реполяризация мембраны происходит в результате последующего увеличения калиевой проводимости и уменьшения внутриклеточного положительного заряда из-за выхода ионов калия из клетки.

Мембранный потенциал при этом вновь приближается к Ек. Такое объяснение механизма генерации потенциала действия ведет к пониманию принципов распространения импульса.