Воспринимающая функция нейрона

Воспринимающая функция нейрона. Все раздражения, поступающие в нервную систему, передаются на нейрон через определённые участки его мембраны, находящиеся в области синаптических контактов.

В большинстве нервных клеток эта передача осуществляется химическим путём с помощью медиаторов.

Ответом нейронов на внешнее раздражение является изменение величины мембранного потенциала. Чем больше синапсов на нервной клетке, тем больше воспринимается различных раздражений, и, следовательно, шире сфера влияний на её деятельность и возможность участия нервной клетки в разнообразных реакциях организма.

На телах крупных мотонейронов спинного мозга насчитывают до 15 тыс. до 20 тыс. синапсов. Разветвление аксонов могут образовывать синапсы на дендритах (аксодендрические синапсы) и на соме (теле) нервных клеток (аксосоматические синапсы). В ряде случаев на аксоне (аксоаксональные синапсы) наибольшее число до 50% синапсов находится на дендритах.

Особенно густо они покрывают средние части и окончания дендритных отростков, при чем многие контакты расположены на специальных шипиковидных выростах, или шипиках, которые ещё больше увеличивают восприимчивую поверхность нейрона. в мотонейронах спинного мозга и пиромидальных клетках коры поверхность дендритов в 10-20 раз больше поверхности клетки. Чем сложнее интегративная функция нейрона, тем большее развитие имеют аксодендритические синапсы (в первую очередь те, которые расположены на шипиках). Особенно они характерны для нейрональных связей пирамидальных клеток в коре больших полушарий.

Промежуточные нейроны (например, звездчатые клетки коры) таких шипиков лишены. Приходящие в пресинаптическую связь контакта нервные импульсы, вызывают опорожнение синаптических пузырьков с выведением медиатора в синаптическую щель. Веществами, передающими нервные влияния синаптических нервных клеток, или медиаторами, могут быть ацетилхолин (в некоторых клетках спинного мозга в вегетативных ганглиях), норадреналин (в окончаниях симпатических нервных волокон, в гипаталамусе), некоторые аминокислоты и многое др. Диаметр пузырьков примерно равен ширине синаптической щели. В клетках передней центральной извилине коры больших полушарий у людей 18-30 лет синаптические пузырьки имеют диаметр 250-300 ангстрем при ширине синаптической щели 200-300 ангстрем. Выделение медиатора облегчается тем, что синаптические пузырьки скапливаются вблизи от синаптической щели в так называемых активных или оперативных зонах.

Чем больше нервных импульсов проходит через синапс, тем больше пузырьков перемещается в эту зону и прикрепляется к пресинаптической мембране.

В результате облегчается выделение медиатора последующими нервными импульсами. 6.2 Интегративная функция нейрона Общее изменение мембранного потенциала нейрона является результатом сложного взаимодействия (интеграции) местных ВПСП и ТПСП всех многочисленных активированных синапсов на теле и дендритах клетки.

На мембране нейрона происходит процесс алгебраического суммирования положительных и отрицательных колебаний потенциала. При одновременной активации нескольких возбуждающих синапсов общий ВПСП нейрона представляет сумму отдельных местных ВПСП и ТПСП – происходит взаимное вычитание их эффектов. В конечном итоге реакция нервной клетки определяется суммой всех синаптических влияний. Преобладание тормозных синаптических воздействий приводит к гиперполяризации мембраны и торможению деятельности клетки.

При сдвиге мембранного потенциала в сторону деполяризации повышается возбудимость клетки. Ответный разряд нейрона возникает лишь тогда, когда изменения мембранного потенциала достигают порогового значения – критического уровня деполяризации. Для этого величина ВПСП клетки должна составлять примерно 10 мв. В крупных (афферентных и эфферентных) нейронах возбудимость различных участков мембраны неодинакова. С момента достижения критического уровня деполяризации начинается лавинообразное вхождение натрия в клетку и регистрируется потенциал действия (ПД). 6.3 Эффекторная функция нейрона С появлением ПД, который в отличие от местных изменений мембранного потенциала (ВПСП и ТПСП) является распространяющимся процессом, нервный импульс начинает проводиться от тела нервной клетки вдоль по аксону к другой нервной клетке или рабочему органу, т.е. осуществляется эффекторная функция нейрона.

Синапсы, расположенные ближе к возбудимой низкопороговой зоне на теле клетки оказывают большее влияние на возникновение потенциала действия, чем более удаленные, расположенные на окончаниях дендритов.

Импульсы, приходящие через аксосоматический синапс, как правило, вызывают ответный разряд нейрона, а импульсы, действующие на аксодендрический синапс – лишь подпороговое изменение его возбудимости. Так, разряды мотонейронов спинного мозга и пирамидных нейронов коры, вызывающие двигательные реакции организма, являются ответом на специфические аксосоматические влияния.

Но возникнет ли этот ответ или нет, определяется характером воздействий, поступающих через аксодендритические синапсы от других нервных путей. Так складываются адекватные реакции, зависящие от многих раздражений, действующих на организм в данный момент времени, и осуществляется тонкое приспособление поведения к меняющимся условиям внешней среды. Процессы, происходящие в активном нейроне, можно представить в виде следующей цепи: потенциал действия в пресинаптическом окончании предыдущего нейрона – выделение медиатора в синаптическую щель – увеличение проницаемости постсинаптической мембраны – её деполяризация (ВПСП) или гиперполяризация (ТПСП) – взаимодействие ВПСП и ТПСП на мембране сомы и дендритов нейрона – сдвиг мембранного потенциала в случае преобладания возбуждающих влияний – достижение критического уровня деполяризации – возникновение потенциала действия в низкопороговой зоне (мембране начального сегмента) нейрона - распространение потенциала действия вдоль по аксону (процесс проведения нервного импульса) - выделение медиатора в окончаниях аксона (передача нервного процесса на следующий нейрон или на рабочий орган). Таким образом, передача информации в нервной системе происходит с помощью двух механизмов – электрического (ВПСП, ТПСП, потенциалы действия) и химического (медиаторы).