Обзор литературы

Обзор литературы. Органические вещества образуют около 20 - 30% состава клетки. Биополимеры. К биополимерам относятся углеводы и белки. Биологическая роль углеводов общая формула CnH2nOn Углеводы Где содержатся Биологическая роль Какие белки-ферменты и белки-гормоны действуют на углеводы Моносахариды: a) Глюкоза b) Рибоза В клетках В сотаве нуклеиновых кислот Источник энергии Входит в структуру гена Ферменты клеточных мембран Фермент рибонуклеаза Дисахариды: a) Свекловичный сахар b) Молочный сахар В клетках растений В молоке Источник энергии Источник энергии Ферменты кишечника человека и животных Ферменты сока поджелудочной железы Полисахариды: a) Крахмал b) Гликоген В клетках растений В клетках печени Источник энергии Источник энергии Ферменты слюны, сока поджелудочной железы Белок-гормон инсулин Итак, первые и важные представители органических веществ. 1. БЕЛКИ, высокомолекулярные природные полимеры, построенные из остатков аминокислот, соединенных амидной (пептидной) связью —СО—NH—. Каждый белок характеризуется специфичностью аминокислотной последовательностью и индивидуальной пространств, структурой (конформацией). На долю белков приходится не менее 50% сухой массы органической соединительной животной клетки.

Функционирование белков лежит в основе важнейших процессов жизнедеятельности организма.

Обмен веществ (пищеварение, дыхание и др.), мышечное сокращение, нервная проводимость и жизнь клетки в целом неразрывно связаны с активностью ферментов - высокоспецифичных катализаторов биохимических ракций, являющихся белками.

Основу костной и соединительной тканей, шерсти, роговых образований составляют структурные белки. Они же формируют остов клеточных органелл (митохондрий, мембран и др.). Важную группу составляют регуляторные белки, контролирующие биосинтез белков и нуклеиновых кислот.

Информация о состоянии внешней среды, различают регуляторные сигналы (в т. ч. гормональные) воспринимаются клеткой с помощью специальных рецепторных белков, располагающихся на наружной поверхности плазматической мембраны. Эти белки играют важную роль в передаче нервного возбуждения и в ориентированном движении клетки (хемотаксисе). Большое значение имеют пищевые и запасные белки (например, Казеин, Проламины), играющие важную роль в развитии и функционировании организмов.

Защитные системы высших организмов формируются защитными белками, к которым относятся иммуноглобулины (ответственны за иммунитет), белки комплемента (ответственны за лизис чужеродных клеток и активацию иммунологической функции), белки системы свертывания крови (например, Тромбин, Фибрин) и противовирусный белок интерферон. По составу белки делят на простые, состоящие только из аминокислотных остатков, и сложные. Сложные могут включать ионы металла (металлопротеиды) или пигмент (хромопротеиды), образовывать прочные комплексы с липидами (липопротеины), нуклеиновыми кислотами (нуклеопротеиды), а также ковалентно связывать остаток фосфорной кислоты (фосфопротеиды), углевода (гликопротеины) или нуклеиновой кислоты. В соответствии с формой молекул белки подразделяют на глобулярные и фибриллярные.

Молекулы первых свернуты в компактные глобулы сферической или эллипсоидной формы, молекулы вторых образуют длинные волокна (фибриллы) и высокоасимметричны.

Большинство глобулярных белков, в отличие от фибриллярных, растворимы в воде. Особую группу составляют мембранные (амфипатические) белки, характеризующиеся неравномерным распределением гидрофильных и гидрофобных (липофильных) участков в молекуле: погруженная в биологическую мембрану часть глобулы состоит преимущественно из липофильных аминокислотных остатков, а выступающая из мембраны - из гидрофильных. 1.1. Строение белковых молекул. Практически все белки построены из 20 аминокислот, принадлежащих, за исключением глицина, к L-ряду. Аминокислоты соединены между собой пептидными связями, образованными карбоксильной и аминогруппами соседних аминокислотных остатков (см.формулуI): Белковая молекула может состоять из одной или нескольких цепей, содержащих от 50 до нескольких сотен (иногда - более тысячи) аминокислотных остатков.

Молекулы, содержащие менее 50 остатков, часто относят к пептидам. В состав многих молекул входят остатки цистина, дисульфидные связи которых ковалентно связывают участки одной или нескольких цепей.

Различают четыре уровня организации белковых молекул. Последовательность аминокислотных остатков в полипептидной цепи называется первичной структурой. Все белки различаются по первичной структуре; потенциально возможное их число практически неограниченно. Термин "вторичная структура" относится к типу укладки полипептидных цепей. Наиболее часто встречающиеся типы - правая спираль и структура. Первая характеризуется планарностью пептидной группы; водородные связи между СО-и NH-группами пептидной цепи замыкают циклы из 13 атомов. В случае структуры, или структуры складчатого листа, полипептидные цепи растянуты, уложены параллельно друг другу и связаны между собой водородными связями.

Остов цепи не лежит в одной плоскости, а вследствие небольших изгибов при углеродных атомах образует слегка волнистый слой. Боковые группы располагаются перпендикулярно плоскости слоя. Под третичной структурой белков понимают расположение его полипептидной цепи в пространстве. Существенное влияние на формирование третичной структуры оказывают размер, форма и полярность аминокислотных остатков.

В молекулах глобулярных белков большая часть гидрофобных остатков скрыта внутри глобулы, а полярные группировки располагаются на ее поверхности в гидратированном состоянии. Однако ситуация не всегда настолько проста. Связывание белка с другими молекулами, например, фермента с его субстратом или коферментом, почти всегда осуществляется с помощью небольшого гидрофобного участка на поверхности глобулы.

Область контакта мембранных белков с липидами формируется преимущественно гидрофобными остатками. Третичная структура многих белков составляется из нескольких компактных глобул, называемых доменами. "Четвертичная структура" относится к макромолекулам, в состав которых входит несколько полипептидных цепей (субъединиц), не связанных между собой ковалентно. Такая структура отражает способ объединения и расположения этих субъединиц в пространстве. Между собой отдельные субъединицы соединяются водородными, ионными, гидрофобными и другими связями.

Изменение рН и ионной силы раствора, повышение температуры или обработка детергентами обычно приводят к диссоциации макромолекулы на субъединицы. Этот процесс обратим: при устранении факторов, вызывающих диссоциацию, может происходить самопроизвольная реконструкция исходной четвертичной структуры. Явление носит общий характер: по принципу самосборки функционируют многие биол. структуры. Способность к самосборке свойственна и отдельным фрагментам белков - доменам.

Более глубокие изменения конформации белков с нарушением третичной структуры называемой денатурацией. 2. ЖИРЫ Жиры, органические соединения, полные сложные эфиры глицерина (триглицериды) и одноосновных жирных кислот; входят в класс липидов. Наряду с углеводами и белками жиры — один из главных компонентов клеток животных, растений и микроорганизмов. Строение жиров отвечает общей формуле: CH2-O-CO-R’ CH-О-CO-R’’ CH2-O-CO-R’’’, где R’, R’’ и R’’’ — радикалы жирных кислот.

Все известные природные жиры содержат в своём составе три различных кислотных радикала, имеющих неразветвлённую структуру и, как правило, чётное число атомов углерода. Из насыщенных жирных кислот в молекуле жиров чаще всего встречаются стеариновая и пальмитиновая кислоты, ненасыщенные жирные кислоты представлены в основном олеиновой, линолевой и линоленовой кислотами. Физико-химические и химические свойства жиров в значительной мере определяются соотношением входящих в их состав насыщенных и ненасыщенных жирных кислот.

Жиры нерастворимы в воде, хорошо растворимы в органических растворителях, но обычно плохо растворимы в спирте. При обработке перегретым паром, минеральными кислотами или щёлочью жиры подвергаются гидролизу (омылению) с образованием глицерина и жирных кислот или их солей. При сильном взбалтывании с водой образуют эмульсии. Примером стойкой эмульсии жиров в воде является молоко.

Эмульгирование жиров в кишечнике (необходимое условие их всасывания) осуществляется солями жёлчных кислот. Природные жиры подразделяют на жиры животные и растительний. В организме жиры — основной источник энергии. Энергетическая ценность жиров в 2 с лишним раза выше, чем углеводов. Жиры, входящие в состав большинства мембранных образований клетки и субклеточных органелл, выполняют важные структурные функции. Благодаря крайне низкой теплопроводности жир, откладываемый в подкожной жировой клетчатке, служит термоизолятором, предохраняющим организм от потери тепла, что особенно важно для морских теплокровных животных (китов, тюленей и др.). Вместе с тем жировые отложения обеспечивают известную эластичность кожи. Содержание жиров в организме человека и животных сильно варьирует.

Особенно высоко содержание жиров у с х. животных при их специальном откорме. В организме животных различают жиры запасные (откладываются в подкожной жировой клетчатке и в сальниках) и протоплазматические (входят в состав протоплазмы в виде комплексов с белками, называемые липопротеидами). При голодании, а также при недостаточном питании в организме исчезает запасной жир, процентное же содержание в тканях протоплазматических жиров остаётся почти без изменений даже в случаях крайнего истощения организма.

Запасной жир легко извлекается из жировой ткани органическими растворителями. Протоплазматические жиры удаётся извлечь органическими растворителями только после предварительной обработки тканей, приводящей к денатурации белков и распаду их комплексов с жирами.

В растениях жиры содержатся в сравнительно небольших количествах. Исключение составляют масличные растения, семена которых отличаются высоким содержанием жиров. 3. УГЛЕВОДЫ, обширная группа органических соединений, входящих в состав всех живых организмов. Первые известные представители этого класса веществ по составу отвечали общей формуле CmH2nOn, то есть углерод + вода (отсюда название); позднее к углеводам стали относить также их многочисленные производные с иным составом, образующиеся при окислении, восстановлении или введении заместителей. Тростниковый сахар (сахарозу) можно считать первым органическим веществом, выделенным в химически чистом виде. 3.1. Классификация и распространение углеводов.

Углеводы принято делить на три основных группы: моносахариды, олигосахариды и полисахариды. Обычные моносахариды представляют собой полиокси-альдегиды (альдозы) или полпоксикетоны (кетозы) с линейной цепью атомов углерода (m = 3—9), каждый из которых (кроме карбонильного углерода) связан с гидроксильной группой.

Простейший из моносахаридов — глицериновый альдегид — содержит один асимметрический атом углерода и известен в виде двух оптических антиподов (D и L). Прочие моносахариды имеют несколько асимметрических атомов углерода. Характерное свойство моносахаридов в растворах — способность к мутаротации, то есть установлению таутомерного равновесия между ациклической альдегидо- или кетоформой, двумя пятичленными (фуранозными) и двумя шестичленными (пиранозными) циклическими полуацетальными формами.

Образующиеся пиранозы (как и фуранозы) различаются конфигурацией возникающего при циклизации асимметрического центра у карбонильного атома углерода (на схеме помечен звёздочкой). К наиболее типичным моносахаридам относятся D-глюкоза, D-манноза, D-галактоза, D-фруктоза, D-ксилоза, L-арабиноза. Олигосахариды содержат в своём составе 2—10 моносахаридов, связанных гликозидными связями.

Наиболее распространены в природе дисахариды сахароза, трегалоза, лактоза. Известны многочисленные гликозиды оли-госахаридов, к которым относятся различные физиологически активные вещества (например, флавоноиды, сердечные гликозиды, сапонины, многие антибиотики, гликолипиды). Полисахариды — высокомолекулярные, линейные или разветвленные соединения, молекулы которых построены из моносахаридов, связанных гликозидными связями. В состав полисахаридов могут входить также заместители неуглеводной природы (остатки фосфорной, серной и жирных кислот). В свою очередь цепи полисахаридов могут присоединяться к белкам с образованием гликопротеидов.

Отдельную группу составляют биополимеры, в молекулах которых остатки моно- или олигосахаридов соединены друг с другом не гликозидными, а фосфодиэфирными связями; к этой группе относятся тейхоевые кислоты из клеточных стенок грамположительных бактерий, некоторые полисахариды дрожжей, а также нуклеиновые кислоты, в основе которых лежит полирибозофосфатная (РНК) или поли-2-дезоксирибозофосфатная (ДНК) цепь. 3.2. Физико-химические свойства углеводов.

Благодаря обилию полярных (гидроксильных, карбонильной и др.) групп в молекулах моносахаридов они хорошо растворимы в воде и нерастворимы в неполярных органических растворителях (бензоле, петролейном эфире и др.). Способность к таутомерным превращениям обычно затрудняет кристаллизацию моносахаридов. Если такие превращения невозможны, как в гликозидах или олигосахаридах типа сахарозы, вещества кристаллизуются легко.

Многие гликозиды с малополярными агликонами (например, сапонины) проявляют свойства поверхностно-активных соединений. 3.3. Биологическая роль углеводов. Роль углеводов в живых организмах чрезвычайно многообразна. В растениях моносахариды являются первичными продуктами фотосинтеза и служат исходными соединениями для биосинтеза разнообразных гликозидов, полисахаридов, а также веществ других классов (аминокислот, жирных кислот, полифенолов и т.д.). Эти превращения осуществляются соответствующими ферментными системами, субстратами для которых служат, как правило, богатые энергией фосфорилированные производные сахаров, главным образом нуклеозиддифосфатсахара.

Углеводы запасаются в виде крахмала в высших растениях, в виде гликогена в животных, бактериях и грибах и служат энергетическим резервом для жизнедеятельности организма. В виде гликозидов в растениях и животных осуществляется транспорт различных продуктов обмена веществ.

Жёсткая клеточная стенка у высших растений построена из целлюлозы и гемицеллюлоз; в построении клеточной стенки грибов и наружного скелета членистоногих принимает участие хитин. В организме животных и человека опорные функции выполняют сульфатированные мукополисахариды соединительной ткани, свойства которых позволяют обеспечить одновременно сохранение формы тела и подвижность отдельных его частей; эти полисахариды также способствуют поддержанию водного баланса и избирательной катионной проницаемости клеток.

Особенно важную и до конца ещё не изученную роль играют сложные углеводы в образовании специфических клеточных поверхностей и мембран. Так, гликолипиды — важнейшие компоненты мембран нервных клеток, липополисахариды образуют наружную оболочку грамотрицательных бактерий. Углеводы клеточных поверхностей часто определяют явление иммунологической специфичности, что строго доказано для групповых веществ крови и ряда бактериальных антигенов.

Имеются данные, что углеводные структуры принимают участие также в таких высокоспецифичных явлениях клеточного взаимодействия, как оплодотворение, «узнавание» клеток при тканевой дифференциации и отторжении чужеродной ткани и т.д. 4. НУКЛЕИНОВЫЕ КИСЛОТЫ (полинуклеотиды), биополимеры, осуществляющие хранение и передачу генетической информации во всех живых организмах, а также участвующие в биосинтезе белков. Первичная структура нуклеиновых кислот представляет собой последовательность остатков нуклеотидов.

Последние в молекуле нуклеиновых кислот образуют неразветвленные цепи. В зависимости от природы углеводного остатка в нуклеотиде (D-дезоксирибозы или D-рибозы) нуклеиновые кислоты подразделяют соответственно на дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК) кислоты. В молекуле ДНК гетероциклы, входящие в остаток нуклеотида, представлены двумя пуриновыми основаниями - адeнином (А) и гуанином (G), и двумя пиримидиновыми основаниями тимиком (Т) и цитозином (С); РНК вместо Т содержит урацил (U). Кроме того, в нуклеиновых кислотах в небольших количествах обнаруживаются модифицированные остатки нуклеозидов так называемые минорные нуклеозиды, которыми особенно богаты транспортные рибонуклеиновые кислоты (тРНК). Отдельные нуклеотидные остатки связаны между собой в полинуклеотидных цепях 3 5 фосфодиэфирными связями (см. формулу). Свойства ДНК и РНК различны.

Так, РНК легко расщепляется щелочами до мононуклеотидов (благодаря наличию группы 2 ОН), в то время как полинуклеотидные цепи ДНК в тех же условиях стабильны.

Это структурное различие определяет и меньшую устойчивость к воздействию кислот N-гликозидных связей (связь между гетероциклом и остатком рибозы) в ДНК по сравнению с РНК. Структура ДНК описывается как комплекс двух полинуклеотидных антипараллельных цепей, закрученных относительно общей оси, так что углевод-фосфатные цепи составляют периферию молекулы, а азотсодержащие гетероциклы направлены внутрь. Двойная спираль ДНК (стрелками показано направление полинуклеотидной цепи). Установлено, чго молекула ДНК в клетке представляет собой совокупность генов, регуляторных участков (последовательностей, связывающихся с регуляторными белками и управляющих уровнем экспрессии генов), районов, участвующих в организации генов в хромосомах, а также последовательностей, функции которых не известны.

ДНК образуют кольцевые структуры. В том случае, если обе полинуклеотидные цепи ДНК ковалентно непрерывны, ДНК может находиться в сверхспирализованной (сверхскрученной) форме.

В клетках сверхспирализация осуществляется ферментами ДНК-гиразами (топоизомеразами II). Сверхспирализация двухцепочечной кольцевой ДНК под действием ДНК-гиразы: 1 - кольцевая форма ДНК; 2 - сверхспирализованная форма ДНК. 4.1. Рибонуклеиновые кислоты. РНК, как правило, построены из одной полинуклеотидной цепи, характерный элемент вторичной структуры которой "шпильки", перемежающиеся однотяжевыми участками. Шпилька - двутяжевая спиральная структура, образующаяся в результате комплементарного спаривания оснований (А с U и G с С). Шпильки и соединяющие их одно-тяжевые участки РНК укладываются в компактную третичную структуру.

Известны редкие примеры целиком двухспиральных молекул РНК. 4.2. Определение первичной структуры (Секвенирование) нуклеиновых кислот. Секвенирование нуклеиновых кислот позволяет определить в одном эксперименте последовательность нуклеотидов в ДНК или РНК, содержащих несколько сотен мономерных звеньев.

Методы основаны на общем принципе - определении с помощью высоко разрешающего электрофореза в полиакриламидном геле с точностью до одного нуклеотида длины всех возможных фрагментов секвенируемого участка нуклеиновой кислоты, содержащих на одном конце одну и ту же последовательность нуклеотидов (гомогенный фрагмент), а на другом один и тот же нуклеотид. 4.3. Получение нуклеиновых кислот. В клетках нуклеиновые кислоты связаны с белками, образуя нуклеопротеиды. Выделение нуклеиновых кислот сводится преимущественно к очистке их от белков.

Для этого препараты, содержащие нуклеиновые кислоты, обрабатывают ПАВ и экстрагируют белки фенолом. Последняя очистка и фракционирование нуклеиновых кислот проводятся с помощью ультрацентрифугирования, различных видов жидкостной хрома-тографии и гель-электрофореза. Для получения индивидуальных нуклеиновых кислот обычно используют различные варианты последнего метода. Современные методы химического синтеза нуклеиновых кислот позволяют получать крупные фрагменты ДНК, в т.ч. целые гены. Синтез нуклеиновых кислот Сравнительная характеристика ДНК и РНК Признаки сравнения ДНК РНК Местонахождение в клетке Ядро, митохондрии, хлоропласты Ядро, рибосомы, цитоплазмы, митохондрии, хлоропласты Местонахождение в ядре Хромосомы Ядрышко Строение макромолекулы Двойной неразветвленный линейный полимер, свернутый правозакрученной спиралью Одинарная полинуклеотидная цепочка Состав нукотидов Азотистое основание (аденин, гуанин, тимин, цитозин); дезоксирибоза (углевод); остаток фосфорной кислоты Азотистое основание (аденин, гуанин, урацил, цитозин); рибоза (углевод); остаток фосфорной кислоты Функции Химическая основа хромосомного генетического материала (гена); синтез ДНК и РНК, информация о структуре белков Информационная (иРНК) передает код наследственной информации о первичной структуре белковой молекулы; рибосомальная (рРНК) входит в состав рибосом; транспортная (тРНК) переносит аминокислоты к рибосомам.