рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ДНК-лигазы

ДНК-лигазы - раздел Биология, Эукариотические ДНК-полимеразы и ДНК-полимеразы археев   Днк-Лигазы Катализируют Образование Фосфодиэфирной Свя...

 

ДНК-лигазы катализируют образование фосфодиэфирной связи в однонитевом разрыве (ОР) днДНК между смежными 3’-гидроксильным и 5’-фосфатным концами разорванной нити. Для связывания ДНК-лигаз с ОР в днДНК абсолютно необходима 5’-фосфатная группа, а 3’-ОН-группа не обязательна. Однако обе группы требуются для реакции лигирования. ДНК-лигазы воссоединяют в ДНК только ОР, но не бреши, и пробел длиной даже в 1 н. полностью устраняет связывание фермента с ДНК. ДНК-лигазы участвуют в воссоединении фрагментов Оказаки, образующихся во время синтеза отстающей нити в процессе репликации. Кроме того, ДНК-лигазы устраняют ОР ДНК в процессах репарации и рекомбинации.

Прототипом бактериальных ДНК-лигаз является продукт гена ligA (ранее lig), расположенного на 51-ой мин генетической карты E. coli. Эта ДНК-лигаза имеет длину 671 остаток (мол. м. 73,7 кД), вызывает воссоединение ОР во всех процессах метаболизма ДНК (репликации, репарации и рекомбинации) и является абсолютно необходимой для роста клеток. В последнее время в полностью секвенированном геноме E. coli была обнаружена открытая рамка считывания, названная ligB и кодирующая вторую, более короткую ДНК-лигазу длиной 562 аминокислотных остатка, гомологичную LigA. Лигаза LigB также катализирует воссоединение ОР в ДНК in vitro, но её физиологическая роль пока не установлена.

У млекопитающих идентифицированы 4 разных типа ДНК-лигаз, содержащихся в ядерных экстрактах клеток. Главной функцией ДНК-лигазы I явлется воссоединение фрагментов Оказаки, хотя она участвует и в репарации ДНК. ДНК-лигаза I человека имеет длину 919 остатков (мол. м. 102 кД) и кодируется геном LIG1, расположенным в хромосоме 19 и содержащим 27 интронов. ДНК-лигазы IIIa, участвующая в эксцизионной репарации ДНК, и IIIb, (известная также как ДНК-лигаза II) кодируются альтернативно сплайсированными мРНК одного и того же гена, и их аминокислотные последовательности различаются только на С-конце. ДНК-лигаза IV по субстратной специфичности отличается от ДНК-лигаз I и III и у мышей является существенным белком. Она участвует в негомоогическом соединении концов ДНК во время репарации двунитевых разрывов ДНК.

У дрожжей S. cerevisiae отсутствуют гомологи ДНК-лизаз III млекопитающих, а гомолог ДНК-лигазы IV кодируется геном DNL4/LIG4 и также участвует в негомологическом соединении концов ДНК. Главная ДНК-лигаза I у дрожжей кодируется ядерным геном CDC9. Продуктами этого гена являются два белка, которые транслируются в одной рамке считвания, но с использованием разных инициирующих кодонов. При инициации трансляции на первом кодоне АУГ образуется белок длиной 755 остатков, имеющий на N-конце функциональную предпоследовательность, которая нацеливает белок на экспорт в митохондрии. При инициации трансляции на втором кодоне АУГ образуется белок длиной 732 остатка, локализующийся в ядре. После отщепления пропоследовательности в митохондриях первая форма ДНК-лигазы I становится тождественной главной ядерной форме.

Для активности ДНК-лигаз необходимы нуклеотидные кофакторы, в зависимости от природы которых лигазы можно разбить на два класса. ДНК-лигазы эукариотов, археев, бактериофагов, эукариотических вирусов и некоторых эубактерий используют в качестве кофакторов АТФ и относятся к классу I. ДНК-лигазы класса II, кофактором которых служит НАД+, имеются исключительно у эубактерий. ДНК-лигазы LigA и LigB у E.coli принадлежат к этому классу. АТФ-зависимые ДНК-лигазы гетерогенны по размеру (от 30 до >100 кД), а НАД-зависимые ДНК-лигазы являются высокогомологичными мономерными ферментами с мол. массами 70-80 кД. ДНК-лигазы двух разных классов почти не гомологичны друг другу, за исключением 5 из 6 мотивов последовательности, образующих активный центр суперсемейства нуклеотидилтрансфераз (см. рис. 2.00). Эти мотивы сохраняются и у кэпирующих ферментов эукариотических мРНК, к-рые близки к ДНК-лигазам по механизму действия, но используют в качестве субстрата ГТФ.

Механизм реакции, катализируемой ДНК-лигазами разных классов, состоит из 3 последовательных стадий (рис. 2.20). Первая стадия заключается в активации лигазы – аденилировании с образованием ковалентного интермедиата фермент – АМФ (Е-АМФ), в котором остаток АМФ связан фосфоамидной связью с e-аминогруппой консервативного остатка лизина в консервативном мотиве I активного центра. АТФ-зависимые эукариотические и архейные лигазы используют АТФ при образовании комплекса Е-АМФ и освобождают на первой стадии пирофосфат. Для бактериальных ДНК-лигаз донором АМФ в реакции аденилирования служит НАД+, при расщеплении которого освобождается НМН+. Последующие две стадии одинаковы для лигаз обоих классов.

Во время второй стадии АМФ переносится из комплекса Е-АМФ на 5’-концевую фосфатную группу ОР ДНК с образованием ковалентного интермедиата ДНК-АМФ с (5’®5’)-фосфоангидридной связью. Этот интермедиат является гораздо более короткоживущим, чем комплекс Е-АМФ. На заключительной стадии свободная 3’-гидроксильная группа ОР атакует (5'®5’)-связь в активированном комплексе ДНК-АМФ. Это сопровождается образованием фосфодиэфирной связи, устраняющей ОР в ДНК, и освобождением АМФ.

 

АТФ-зависимые ДНК лигазы НАД+-зависимые ДНК-лигазы

Е + рррА Е + НАД+

(-PPi) (-НМН+)

– Конец работы –

Эта тема принадлежит разделу:

Эукариотические ДНК-полимеразы и ДНК-полимеразы археев

На сайте allrefs.net читайте: Эукариотические ДНК-полимеразы и ДНК-полимеразы археев...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ДНК-лигазы

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Биосинтез ДНК. Общие определения
  ДНК, служащая первичным носителем генетической информации, является линейным или кольцевым гетерополимером, состоящим из 4 дезоксирибонуклеотидов (dA, dT, dG и dC), соединенных (3’®

A. ДНК дНТФ
    5’

ДНК-полимераза II E.coli
  ДНК-полимераза II (PolII), кодируемая геном polB (dinA), является единственной из ДНК-полимераз E. coli, относящимся к полимерзному семейству В, в которое входят преимуществе

ДНК-полимераза III E. coli
  Главной репликативной ДНК-полимеразой E. coli является многосубъединичный комплекс ДНК-полимеразы III (PolIII). Самая большая каталитическая a-субъединица PolIII длиной 1160

ДНК-полимераза a
Эукариотические ДНК-полимеразы a (Pola) входят в состав состоящего из 4 субъединиц белкового комплекса, в котором две самые большие субъединицы определяют ДНК-полимеразную активность, а две малые с

Главные эукариотические ДНК-полимеразы
  ДНК-поли- мераза (типсемейство) Функции Мол. массы субъединиц в кД Гены (хромосомы) Функции субъединиц

ДНК-полимераза b
  ДНК-полимераза b (Polb) млекопитающих является самой маленькой из известных эукариотических ДНК-полимераз и относится к семейству Х, к которому принадлежит, например, и терминальная

ДНК-полимераза g
ДНК-полимераза g (Polg), кодируемая ядерными генами, является единственной эукариотической ДНК-полимеразой, участвующей в репликации митохондриальной ДНК (мтДНК), которая идет по непрерывному механ

ДНК-полимеразы d и e
Гетеромультимерные ДНК-полимеразы g и e (Polg и Pole) участвуют не только в репликации ДНК, но и в нуклеотидной эксцизионной репарации, эксцизионной репарации оснований, коррекции ошибочно спаренны

ДНК-полимеразы археев
  По ультраструктуре клеток представители третьего домена живых организмов археи (Archaea) похожи на бактерии и относятся к прокариотам. Их метаболические процессы в целом такж

Скользящие зажимы ДНК-полимераз и их погрузчики
  1.4.1. Скользящие зажимы – факторы процессивности ДНК-полимераз   Особый класс субъединиц холоферментов ДНК-полимераз образуют белки-зажим

Погрузчики скользящего зажима
  Кольца олигомерных форм белков DnaN и PCNA являются очень стабильными. Так, константа диссоциации димера DnaB не превышает 50 нМ, а период «полураспада» димерного кольца, надетого н

Общая характеристика геликаз
Геликазами называются ферменты, способные расплетать две комплементарные нити дуплексов нуклеиновых кислот с использованием энергии, полученной при гидролизе 5’-НТФ. Геликазы могут расплетат

Свойства репликативной ДНК-геликазы DnaB E. coli
  ДНК-геликаза DnaB имеет длину 471 аминокислотный остаток (мол. масса 52,4 кД) и кодируется геном dnaB (92-ая мин генетической карты). Количество молекул белка DnaB на клетку

ДНК-геликаза репликативной вилки у эукариотов
  Общее число различных ДНК-геликаз даже у низших эукариотов гораздо больше чем у бактерий. Так, в геноме дрожжей S. cerevisiae около 200 открытых рамок считывания кодируют пре

Механизм действия гексамерных ДНК-геликаз
Рассмотрим рабочие модели нескольких последовательных этапов в каталитическом цикле репликативных гексамерных ДНК-геликаз. Эти модели основаны на экспериментальных данных, но во многих деталях оста

N I II C
Рис. 2.8. Схема организации белка DnaC E. coli. I – область взаимодействия с белком DnaB, II – мотивы связывания АТФ   Количество белка DnaС на клетк

Белки, связывающие однонитевую ДНК
  Однонитевые участки ДНК, появляющиеся в процессах репликации, репарации и рекомбинации ДНК, могут быстро превращаться в нуклеопротеиновые комплексы, полностью покрываясь специальным

Праймазы
  Синтез затравок РНК в процессе образования фрагментов Оказаки при репликации ДНК (преимущественно в отстающей нити) катализируется праймазами – особой разновидностью ДНК-зави

RNAP Toprim
Рис. 2.18. Доменная организация праймазы DnaG E. coli. I – домен связывания с ДНК, II – центральный каталитический домен, III - линкерный домен, IV – домен взаимодействия с другими

Свойства и функции ДНК-топоизмераз
Организм Фермент Ген Поло-жение гена* Длина белка (а.о.) Субъеди-ничная структура Подсе-мейство

Белок-инициатор DnaA
  Белок DnaA играет ключевую роль в инициации репликации хромосомы у многих бактерий. Он последовательно выполняет 3 главные функции: 1) узнает область начала репликации oriC, последо

Минимальная область начала репликации oriC y E.coli
  Область начала репликации (ОНР) oriC является уникальным местом инициации нормальной двунаправленной репликации хромосомы E. coli и расположена на 84-ой мин генетической карт

IHF R5(M)
         

Этапы инициации репликации на ОНР oriC
  Для инициации репликации в ОНР oriC необходимо, чтобы матрица ДНК находилась в сверхскрученной кольцевой форме. Первой стадией инициации является образование начального “преиницииру

Регуляция инициации репликации хромосомы E. coli
  Контроль инициации репликации хромосомы в области oriC имеет два аспекта. Прежде всего, репликация инициируется в фиксированный момент клеточного цикла, через интервалы, равные врем

Области начала репликации (ОНР) ARS и комплекс узнавания ОНР (ORC)
У S. cerevisiae были идентифицированы специфические элементы хромосомной ДНК, названные автономно реплицирующимися последовательностями ARS (autonomously replicating sequences). Встраивание

Этапы пути инициации репликации на ОНР у дрожжей
В конце митоза или в начале фазы G1 клеточного цикла нуклеопротеиновые комплексы ORC-ARS вербуют на ДНК белок Cdc6 c мол. массой 58 кД. Этот белок очень нестабилен и должен синтезировать

Инициация репликации у высших эукариотов
  3.3.1. Белковые компоненты и путь инициации репликации   Гомологи большинства белков S. cerevisiae, участвующих в описанном выше пу

А. В. С.
Рис. 3.10. Электрофоретические картины радиоавтографов рестрикционных фрагментов реплициру

Регуляция инициации репликации в эукариотических клетках
  В эукариотических клетках существует главный регуляторный механизм, делающий инициацию репликации на каждой ОНР возможной один и только один раз за клеточный цикл. Он назван лице

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги