Тема 1. ЗАКОНОМЕРНОСТИ НАСЛЕДОВАНИЯ НА ОРГАНИЗМЕННОМ УРОВНЕ. МОНО - И ДИГИБРИДНОЕ СКРЕЩИВАНИЕ. ПРАВИЛА ВЕРОЯТНОСТИ

Данное занятие является вводным в общую генетику и служит основой для изучения генетики человека. Полученные знания и навыки необходимы для рассмотрения генетических вопросов на медико-биологических, клинических и гигиенических кафедрах.

Цель: Изучить закономерности наследования, установленные Менделем и научиться использовать полученные теоретические знания для анализа наследования менделирующих признаков человека при решении генетических задач.

В результате изучения материала студенты должны:

Знать:

1. Генетическую символику и генетическую терминологию.

2. Основные закономерности наследования, установленные Г.Менделем, и их цитологические основы.

3. Правила вероятности, используемые при решении генетических задач.

Уметь:

1. Решать задачи на моно-, ди- и полигибридное скрещивание.

2. Прогнозировать вероятность проявления в потомстве человека нормальных и патологических признаков.

Вопросы для обсуждения:

1. Дать определение понятий «наследование» и «наследственность».

2. Какие гены называются аллельными и за развитие каких признаков они отвечают?

3. Что такое гибридологический метод исследования и каковы его возможности?

4. В чем заключается суть законов Г.Менделя?

5. Каковы цитологические основы законов Г.Менделя?

6. Почему законы Г.Менделя носят статистический характер?

7. Назовите условия менделирования признаков и приведите примеры таких признаков у человека.

8. Какое скрещивание называется анализирующим и почему? Приведите примеры. Значение анализирующего скрещивания в генетическом анализе

 

 

Краткая характеристика темы:

Для всех эукариотических организмов характерны общие закономерности наследования признаков. Эти закономерности впервые были сформулированы Г.Менделем в 1865 году, благодаря использованию гибридологического метода. Разработанный Г.Менделем гибридологический метод представляет собой анализ характера наследования признаков с помощью системы скрещиваний, суть которых состоит в получении гибридов и количественном анализе их потомков в ряду поколений.

Первый и второй законы Г.Менделя были установлены на основе моногибридных скрещиваний, в которых родительские формы различались по одной паре альтернативных признаков.

I закон Менделя – «закон единообразия гибридов»: при скрещивании гомозиготных родительских форм, различающихся по одной паре альтернативных признаков, в первом поколении наблюдается единообразие гибридов.

II закон Менделя - «закон расщепления»: при скрещивании гибридов I поколения между собой во втором и последующих поколениях наблюдается расщепление по фенотипу 3:1, а по генотипу 1:2:1.

Для теоретического обоснования своих результатов Мендель предложил гипотезу "чистоты гамет", основные положения которой, с современной точки зрения, следующие:

a) наследуются не сами признаки, а наследственные факторы, их определяющие (гены);

б) каждый признак организма определяется двумя наследственными факторами: один фактор организм получает от отца, а другой от матери;

в) при образовании половых клеток (гамет) наследственные факторы расходятся в разные гаметы и оказываются независимыми друг от друга, т.е. чистыми (результат расхождения гомологических хромосом и находящихся в них аллельных генов в процессе мейоза);

г) при оплодотворении происходит равновероятная встреча всех типов гамет.

Если обозначить доминантный и альтернативный ему рецессивный признак (например, гладкие и морщинистые семена гороха) как А и а, то можно представить весь ход проделанного Менделем опыта в виде схемы:

 

 

  Наследование формы семян гороха Цитологическая характеристика скрещивания
Р: ♀АА х ♂ аа
Гаметы:
F1: Аа Гладкие
F1: ♀Аа х ♂ Аа
Гаметы F2:

 

Расщепление по генотипу: 1АА : 2Aa : 1aa.

Расщепление по фенотипу: 3A : 1a.

Следует подчеркнуть, что такое расщепление по фенотипу наблюдается только в случае полного доминирования признака. Если же признак проявляет неполное доминирование (т.е. у гетерозигот наблюдается промежуточное выражение признака), расщепление по генотипу и фенотипу совпадёт. Такой тип наследования характерен для красной и белой окраски цветков у ночной красавицы: гетерозиготные растения имеют розовые цветки, а в F2 наблюдается расщепление: 1АА (красные цветки) : 2Аа (розовые цветки) : 1aa (белые цветки).

III закон Менделя – «закон независимого наследования»: при скрещивании родительских форм, различающихся по двум и более парам альтернативных признаков, наследование по каждой паре признаков идёт независимо от других пар признаков.

Третий закон Менделя относится к скрещиваниям, в которых родительские формы различаются по двум и более парам альтернативных признаков. Скрещивание, в котором родительские формы различаются по двум парам альтернативных признаков, называется дигибридным, по нескольким парам признаков - полигибридным.

Классический пример анализа дигибридного скрещивания был продемонстрирован Менделем на примере 2-х сортов гороха, различающихся одновременно по форме и окраске семян:

Родители Р: гладкие желтые ♀ ААВВ х морщинистые зеленые ♂ аавв
Гаметы Р:
Гибриды F1: ♀ АаВв х ♂ АаВв
Гибриды F2:
Результат По фенотипу 9А-В- : 3А-вв : 3ааВ- : 1аавв глад. глад. морщ. морщ. Желтые зеленые желтые зеленые

 

Рис 2

 

 

Таким образом, расщепление по фенотипу во втором поколении соответствует 9АВ : 3Ав : 3аВ : 1ав. Такое расщепление следует ожидать, если наследование по каждой паре признаков идёт независимо, а дигибридное расщепление представляет собой результат наложения двух моногибридных расщеплений:

(3А : 1а) х (3В : 1в) = 9АВ : 3Ав : 3аВ : 1ав.

Рассуждая подобным образом, Г.Мендель вывел цифровые закономерности расщепления для любого полигибридного скрещивания: (3 : 1)n, где n - число пар альтернативных признаков, по которым различаются родительские формы.

Цитологические основы 3-го закона Менделя заключаются в независимом поведении негомологичных хромосом в процессе мейоза. При образовании гамет распределение между ними аллелей, находящихся в данной паре гомологических хромосом, происходит независимо от распределения аллелей из других пар хромосом. Следовательно, у особи, имеющей генотип АаВв, возможно следущее распределение хромосом в процессе мейоза:

Случайное расположение пар гомологических хромосом на экваторе в метафазе первого мейотического деления и их последующее разделение в анафазе I приводит к разнообразному сочетанию аллелей в гаметах. Число возможных комбинаций аллелей в гаметах можно определить по формуле 2n, где n - гаплоидное число хромосом.

Таким образом, закон независимого наследования соблюдается только тогда, когда неаллельные гены находятся в разных парах гомологичных хромосом и взаимодействие между ними отсутствует.