рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Понятия; ген, генотип и фенотип. Фенотипическая и генотипическая изменчивость, мутации

Понятия; ген, генотип и фенотип. Фенотипическая и генотипическая изменчивость, мутации - раздел Биология, Понят...

Понятия; ген, генотип и фенотип. Фенотипическая и генотипическая изменчивость, мутации.

 

Основные этапы развития генетики. Роль отечественных ученых в развитии генетики и селекции (Н.И. Вавилов, А.С. Серебровский Н.К. Кольцов, Ю.А. Филипченко, С.С. Четвериков и др.). Значение генетики для решения задач селекции, медицины, биотехнологии,экологии.

Генетика — наука, изучающая закономерности и материальные основы наследственности и изменчивости организмов, а также механизмы эволюции живого. Основные закономерности передачи наследственных признаков были установлены на растительных и животных организмах, они оказались приложимы и к человеку. В своем развитии генетика прошла ряд этапов. Первый этап ознаменовался открытием Г. Менделем (1865) дискретности (делимости) наследственных факторов и разработкой гибридологического метода, изучения наследственности, т. е. правил скрещивания организмов и учета признаков у их потомства. Дискретность наследственности состоит в том, что отдельные свойства и признаки организма развиваются под контролем наследственных факторов (генов), которые при слиянии гамет и образовании зиготы не смешиваются, не растворяются, а при формировании новых гамет наследуются независимо друг от друга. Законы Г. Менделя были вновь переоткрыты в 1900 г. тремя биологами независимо друг от друга: де Фризом, К. Корренсом и Э. Чермаком. Результаты гибридизации на различных растениях и животных, полностью подтвердили менделевские законы наследования признаков и показали их универсальный характер по отношению ко всем организмам, размножающимся половым путем. Менделевские законы наследственности заложили основу теории гена — величайшего открытия естествознания XX в., а генетика превратилась в быстро развивающуюся отрасль биологии. В 1901 —1903 гг. де Фриз выдвинул мутационную теорию изменчивости. В. Иоганнсен изучал закономерности наследования на чистых линиях фасоли, сформулировал понятие “популяции (группа организмов одного вида, обитающих и размножающихся на ограниченной территории), предложил называть менделевские “наследственные факторы” словом ген, дал определения понятий “генотип” и “фенотип”. Второй этап характеризуется переходом к изучению явлений наследственности на клеточном уровне (питоге-нетика). Т. Бовери (1902—1907), У. Сэттон и Э. Вильсон (1902—1907) установили взаимосвязь между менделевскими законами наследования и распределением хромосом в процессе клеточного деления (митоз) и созревания половых клеток (мейоз). Развитие учения о клетке привело к уточнению строения, формы и количества хромосом и помогло установить, что гены, контролирующие те или иные признаки, не что иное, как участки хромосом. Это послужило важной предпосылкой утверждения хромосомной теории наследственности. В ее обосновании проведены исследования на мушках дрозофилах Т. Г. Морганом и его сотрудниками (1910—1911), установлено, что гены расположены в хромосомах в линейном порядке, образуя группы сцепления. Число групп сцепления генов соответствует числу пар гомологичных хромосом, и гены одной группы сцепления могут перекомбинироваться в процессе мейоза благодаря явлению кроссинговера, что лежит в основе одной из форм наследственной комбинативной изменчивости организмов. Морган установил закономерности наследования признаков, сцепленных с полом.
Третий этап в развитии генетики отражает достижения молекулярной биологии и связан с использованием методов и принципов точных наук — физики, химии, математики, биофизики и др.—в изучении явлений жизни на уровне молекул. Объектами генетических исследований стали грибы, бактерии, вирусы. На этом этапе были изучены взаимоотношения между генами и ферментами и сформулирована теория “один ген — один фермент” (Дж. Бидл и Э. Татум, 1940). В 1953 г. Ф. Крик и Дж. Уотсон создали структурную модель ДНК в форме двойной спирали. В последующее десятилетие уточнилось понятие гена, был расшифрован генетический код и механизм его действия в процессе синтеза белка в клетке, были найдены методы искусственного получения мутаций и с их помощью созданы ценные сорта растений и штаммы микроорганизмов.
В последнее десятилетие возникло новое направление в молекулярной генетике — генная инженерия — система приемов, позволяющих биологу конструировать искусственные генетические системы. Современный этап развития генетики открыл огромные перспективы направленного вмешательства в явления наследственности и селекции растительных и животных организмов, выявил важную роль генетики в медицине, в частности, в изучении закономерностей наследственных болезней и физических аномалий человека. Советские ученые: Вавилов Николай Иванович (1887–1943) –автор современной теории селекции; разработал учение о центрах происхождения культурных растений; сформулировал закон гомологических рядов (закон, согласно которому целые семейства растений в общем характеризуются определенным циклом изменчивости, проходящей через все роды и виды, составляющие семейство.); разработал учение о виде как системе. Дубинин Николай Петрович (р. 1907) – один из основателей отечественной генетики; доказал делимость гена; независимо от западных исследователей установил, что важную роль в эволюции играют вероятностные, генетико-автоматические процессы. Кольцов Николай Константинович (1872–1940) – предсказал свойства носителей генетической информации; разрабатывал теорию гена; разрабатывал учение о социальной генетике (евгенике). Серебровский Александр Сергеевич (1892–1948) –Разработал линейную теорию гена, создал учение о генофонде и геногеографии, показал существование в малых изолированных популяциях стохастических процессов, играющих ключевую роль в селективно-нейтральной эволюции. В основе методов индивидуального отбора у растений лежат генетические представления о чистых линиях, о гомо- и гетерозиготности и о нетождественности фенотипа и генотипа. Генетические закономерности независимого наследования и свободного комбинирования признаков в потомстве послужили теоретической основой гибридизации и скрещивания, которые наряду с отбором входят в число основных методов селекции. Важнейшее значение для повышения эффективности селекции растений имеют закон гомологических рядов Н. И. Вавилова, его учение о генцентрах происхождения культурных растений, а также его теории отдалённых эколого-географических скрещиваний и иммунитета. Большую роль играет генетика в изучении наследственности человека, в предупреждении и лечении наследственных болезней. Она внесла большой вклад в познание диалектико-материалистической картины мира, показав, что коренное свойство жизни — наследственность — основывается на сложной физико-химической структуре хромосомного аппарата, сформировавшегося в ходе эволюции для хранения и передачи генетической информации.

 

Доказательства роли ядра и хромосом в явл. насл-ти. Роль ц/п факторов в передаче насл. инф.

 

Деление клетки и воспроизведение. Генетическая роль митоза и мейоза.

 

Кариотип. Парность хромосом в соматических клетках. Гомологичные хромосомы. Специфичность морфологии и числа хромосом.

 

Молекулярные основы насл-ти. 1 ген-1 полипептид. Белок как элем-ый признак.

 

Доказательства генетической роли нуклеиновых кислот (трансформация у бактерий, опыты с вирусами). Структура ДНК и РНК. Модель ДНК Уотсона и Крика.

Функции нуклеиновых кислот в реализации генетической информации: репликация, транскрипция и трансляция. Методологическое значение принципа передачи генетической информации: ДНК — РНК — белок.

Репликация ДНК в ходе деления клеток начинается с разделения двух цепей, каждая из которых становится матрицей, синтезирующей нуклеотидную последовательность новых цепей. Хеликаза, топоизомераза и ДНК-связывающие белки расплетают ДНК, удерживают матрицу в разведённом состоянии и вращают молекулу ДНК. Правильность репликации обеспечивается точным соответствием комплементарных пар оснований. Репликация катализуется несколькими ДНК-полимеразами, а транскрипция – ферментом РНК-полимеразой. После репликации дочерние спирали закручиваются обратно уже без затрат энергии и каких-либо ферментов. Сравнительно неплохо изучен процесс репликации и транскрипции ДНК бактерий. Их ДНК способна реплицироваться, не распрямляясь в линейную молекулу, то есть в кольцевой форме. Процесс, по-видимому, начинается на определённом участке кольца и идёт сразу в двух направлениях (в одном – непрерывно, во втором – фрагментарно с последующим «склеиванием» фрагментов). Частота ошибок при ДНК-репликации не превышает 1 на 109–1010 нуклеотидов. Столь высокая степень точности воспроизведения информации определяется не только комплементарностью нуклеотидов, но и действием ДНК-полимераз, которые способны распознать ошибку в образующемся коде и исправить её. Следует заметить, что точность воспроизведения РНК и белков в тысячи раз ниже. Это связано с тем, что транскрипция и трансляция, затрагивающие только одну клетку, – не столь жизненно важные процессы, как репликация, которая определяет будущее всего вида. Репликация эукариот при такой же схеме длилась бы несколько месяцев (скорость движения репликативных вилок составляет всего микрометр в минуту). Поэтому в ДНК эукариот процесс начинается одновременно в сотнях и тысячах точек. Все хромосомы в клетке должны реплицироваться одновременно, и одновременно в клетке работают многие тысячи вилок. Между репликацией и транскрипцией есть существенная разница: в первом случае копируется вся молекула ДНК, во втором, как правило, только отдельные гены. Минимальная длина и-РНК определяется длиной полипептидной цепи, для которой она предназначена. Молекулы р-РНК и т-РНК образуются из более длинных предшественников – гетерогенных ядерных РНК (гя-РНК). Длина гя-РНК увеличена за счет нетранслирующихся интронов, которых в конечных РНК уже нет. Интроны удаляются при помощи малой ядерной РНК. мя-РНК комплементарна нуклеотидам на концах интронов – она временно соединяется с ними, стягивая интрон в петлю. Концы кодирующих фрагментов соединяются, после чего интрон благополучно удаляется из цепи. Синтез белка (трансляция) является самымсложным, но несмотря на это синтез протекает с чрезвычайно высокой скоростью (десятки аминокислотных остатков в секунду). Процесс может замедляться и даже останавливаться ингибиторами-антибиотиками. Синтез белка происходит в рибонуклеопротеиновых частицах, называющихся рибосомами. Сам процесс протекает в пять этапов. Активация аминокислот. Каждая из 20 аминокислот белка соединяется ковалентными связями к определённой т-РНК, используя энергию АТФ. Реакция катализуется специализированными ферментами, требующими присутствия ионов магния. Инициация белковой цепи. и-РНК, содержащая информацию о данном белке, связывается с малой частицей рибосомы и с инициирующей аминокислотой, прикреплённой к соответствующей т-РНК. т-РНК комплементарна с находящимся в составе и-РНК триплетом, сигнализирующим о начале белковой цепи. Элонгация. Полипептидная цепь удлиняется за счёт последовательного присоединения аминокислот, каждая из которых доставляется к рибосоме и встраивается в определённое положение при помощи соответствующей т-РНК. В настоящее время генетический код полностью расшифрован, то есть всем аминокислотам поставлены в соответствие триплеты нуклеотидов. Элонгация осуществляется при помощи белков цитозоля (так называемые факторы элонгации). Терминация. После завершения синтеза цепи, о чём сигнализирует ещё один специальный кодон и-РНК, полипептид высвобождается из рибосомы. Сворачивание и процессинг. Чтобы принять обычную форму, белок должен свернуться, образуя при этом определённую пространственную конфигурацию. До или после сворачивания полипептид может претерпевать процессинг, осуществляющийся ферментами и заключающийся в удалении лишних аминокислот, присоединении фосфатных, метильных и других групп и т. п. Генетический код обладает рядом особенностей. Во-первых, в коде отсутствуют «знаки препинания», то есть сигналы, показывающие начало и конец кодонов. Во-вторых, 3 нуклеотидных триплета (УАГ, УАА, УГА) не соответствуют никакой аминокислоте, а обозначают конец полипептидной цепи, а кодон АУГ сигнализирует о начале цепи либо (если он в середине последовательности) об аминокислоте метионине. Многие аминокислоты могут кодироваться несколькими различными кодонами. Все кодоны аминокислот одинаковы у всех изученных организмов: от вируса до человека. После окончания синтеза белок при помощи специального полипептидного лидера доставляется к месту своего назначения. Синтез белка контролируют гены-операторы. Совокупность рабочих генов – операторов и структурных генов – называется оперон. Опероны не являются самостоятельной системой, а «подчиняются» генам-регуляторам, отвечающим за начало или прекращение работы оперона. Свой контроль гены-регуляторы осуществляют при помощи специального вещества, которое они при необходимости синтезируют. Это вещество реагирует с оператором и блокирует его, что влечёт за собой прекращение работы оперона. Если же вещество реагирует с небольшими молекулами – индукторами, это будет являться сигналом к возобновлению работы системы.

Свойства генетического кода. Доказательства триплетности кода. Расшифровка кодонов.

 

Репликация хромосом. Политения. Онтогенетическая изменчивость хромосом.

Процесс удвоения хромосом называют репликацией (редупликацией).

 

Основные закономерности наследования. Цели и принципы генетического анализа. Методы: гибридологический, мутационный, цитогенетический, генеалогический, популяционный, близнецовый, биохимический.

1. При скрещивании чистосортных растений все гибриды первого поколения единообразны и характеризуются доминантным вариантом признака. 2. При скрещивании гибридов первого поколения между собой в их потомстве наблюдается расщепление в соотношении – 3 части растений с доминантным вариантом признака: 1 часть растений с рецессивным вариантом. 3. Отдельные признаки наследуются независимо друг от друга. В дальнейшем закономерности наследования признаков, выявленные Менделем, получили название законов Менделя. Система опытов с целью разложения признаков организма на отдельные элементы и изучение соответствующих им генов носит название «генетический анализ». Основной принцип генетического анализа - принцип анализа единичных признаков, согласно которому на первом этапе рассматриваются поколения по каждому признаку отдельно, независимо от других признаков. Задачи генетического анализа: установление гена; изучение его свойств путем изучения его действия на признаки в различных комбинациях с другими генами; установление сцепления гена с другими генами, ранее установленными; определение расположения гена среди других, сцепленных с ним. Объект генетического анализа – физиология гена: структура, воспроизведение, механизм действия и изменчивость. Гибридологический метод– это анализ хар-ра наследования признаков с помощью системы скрещивания, суть к-ых состоит в получ-и гибридов и анализе их потомков в ряду поколении. Эта схема гибрид. анализа вкл-т: подбор материала для получения гибридов, скрещиваний между собой и анализа след. поколении. Гибрид. метод Г. Менделя имеет след-ие особенности: 1) анализ нач-ся со скрещивания гомозиготных особей («чистые линии»); 2) анализ-ются отдельные альтернативные (взаимоисключающие) признаки; 3) проводится точный количественный учет потомков с различной комбинацией признаков (исп-ся математические методы); 4) наследование анализируемых признаков прослеживается в ряду поколений. Мендель также предложил систему записей скрещивания. В наст. время гибрид. анализ яв-ся частью ген. анализа, позволяющего опр-ть хар-р наследования изучаемого признака, выяс-ть локализацию генов. Генеалогический метод - относящийся к числу основных в генетике человека, этот метод опирается на генеалогию — учение о родословных. Его сутью является составление родословной и последующий ее анализ. Впервые такой подход был предложен английским ученым Ф. Гальтоном в 1865 г. Близнецовый метод - это метод изучения генетических закономерностей на близнецах. Впервые он был предложен Ф. Гальтоном в 1875 г. Близнецовый метод дает возможность определить вклад генетических (наследственных) и средовых факторов (климат, питание, обучение, воспитание и др.) в развитии конкретных признаков или заболеваний у человека. Популяционно-статистический метод - одним из важных направлений в современной генетике является популяционная генетика. Она изучает генетическую структуру популяций, их генофонд, взаимодействие факторов, обусловливающих постоянство и изменение генетической структуры популяций. Цитогенетический метод - основа метода — микроскопическое изучение хромосом человека. Цитогенетические исследования стали широко использоваться с начала 20-х гг. ХХ в. для изучения морфологии хромосом человека, подсчета хромосом, культивирования лейкоцитов для получения метафазных пластинок. Биохимический метод - причиной многих врожденных нарушений метаболизма являются различные дефекты ферментов, возникающие вследствие изменяющих их структуру мутаций. Использование современных биохимических методов (электрофореза, хроматографии, спектроскопии и др.) позволяют определять любые метаболиты, специфические для конкретной наследственной болезни. Мутационный метод - выявление эффекта мутации, оценка мутагенной опасности отдельных факторов и окружающей среды. Поиск неизвестных мутаций и выявление известных мутаций - это разные диагностические задачи. Крупные мутации легче обнаружить. Блоттинг по Саузерну и полимеразная цепная реакция позволяют выявить увеличение числа тринуклеотидных повторов, делеции, вставки и другие перестройки ДНК. Также мутационный метод позволяет выявить любую мутацию, существенно снижающую уровень мРНК.

Основы гибридологического метода: выбор объекта, отбор материала для скрещиваний, анализ признаков, применение статистического метода Разрешающая способность гибридологического метода. Генетическая символика.

С незапамятных времен людей волновал вопрос о причинах сходства потомков и родителей, о природе вновь возникающих изменений. Первый шаг в познании закономерностей наследственности сделал выдающийся чешский исследователь Грегор Мендель. Первый закон Менделя — закон единообразия гибридов первого поколения. При скрещивании гомозиготных особей анализируемых по одной паре альтернативных признаков, наблюдается единообразие гибридов первого поколения, как по фенотипу, так и по генотипу. Второй закон Менделя — закон расщепления. При скрещивании гибридов первого поколения (гетерозиготных организмов), анализируемых по одной паре альтернативных признаков, наблюдается расщепление в соотношении 3:1 по фенотипу и 1:2:1 по генотипу. (Из этих фактов Мендель сделал вывод, что наследуются не сами признаки, а наследственные задатки, или факторы, их определяющие. Эта теория получила название факториальной теории Менделя.) третий закон Менделя — закон независимого комбинирования признаков: при скрещивании гомозиготных организмов, анализируемых по двум (или более) парам альтернативных признаков, во втором поколении наблюдается независимое комбинирование признаков и соответствующих им генов разных аллельных пар. Осн метод, кот Г. Мендель разработал и положил в основу своих опытов, называют гибридологическим. Суть его заключается в скрещивании (гибридизации) организмов, отличающихся др от др по 1 или нескольким признакам. Поскольку потомков от таких скрещиваний называют гибридами, то и метод получил название гибридологического. Мендель использовал для экспериментов чистые линии, т.е. раст, в потомстве кот при самоопылении не наблюдалось разнообразия по изучаемому признаку. Др важной особенностью гибридологического метода было то, что Г. Мендель наблюдал за наследованием альтернативных (взаимоисключающих, контрастных) признаков. Например, рост растений: низкие и высокие, цветки белые и пурпурные, форма семян гладкая и морщинистая. Не менее важная особенность метода – точный количественный учет каждой пары альтернативных признаков в ряду поколений. Математическая обработка опытных данных позволила Г. Менделю установить количественные закономерности в передачи изучаемых признаков. Гибридологический метод лежит в основе современной генетики. Гибридологический анализ - способ изучения наследственных свойств организма путём скрещивания (гибридизации) его с родственной формой и последующим анализом признаков потомства. Г. а. впервые применил Г. Мендель (1865) для изучения механизма передачи наследственных задатков (Генов) от родителей потомкам и для изучения взаимодействия генов у одного и того же организма. В основе Г. а. лежит способность к рекомбинации, т. е. перераспределению генов при образовании гамет, что приводит к возникновению новых сочетаний генов. По этим сочетаниям, которые проявляются в потомстве гибридной особи с определённой частотой, можно судить о Генотипе родительской формы, а по генотипу родительской формы можно предсказывать генотип потомства. Так, генотип особи, гибридной по паре аллелей, одна из которых — доминантная А, другая — рецессивная а, можно представить как Аа. Внешне, т. е. фенотипически, такая форма (Гетерозигота) не отличается от формы с генотипом АА (Гомозигота). Гибрид (Аа) формирует гаметы двух типов, каждый из которых несёт аллель А или аллель а. Т. о., гаметы никогда не бывают гибридными. С помощью различных видов скрещивания можно выявить, сколько типов гамет по данному гену формирует организм, и определить его генотип. Если у анализируемой формы (Аа) возможно самооплодотворение (что часто встречается у растений), схематично это будет выглядеть так: ♂ (А+а) × ♀ (А+а) (АА + Аа + Аа + аа. При этом в потомстве с определённой частотой появляется новая форма — аа. Если самооплодотворения нет, генотип исходной формы выявляют, скрещивая в разных комбинациях её потомков («брат × сестра») и анализируя «внучатое» поколение. Др. способ выявления гибридного состояния — анализирующее скрещивание: скрещивание предполагаемого гибрида с рецессивной родительской формой. Г. а. играет важную роль в селекционной практике и племенном деле, т.к. позволяет судить о тождестве фенотипа и генотипа. Здесь Г. а. находит применение в форме «анализа производителей по потомству» с целью выявления у производителей скрытых нежелательных генов. Г. а. применяется также при составлении хромосомных карт. Знание генного состава хромосомы позволяет путём специальных скрещиваний вводить в Геном определённую хромосому или группу генов и создавать формы с нужным генотипом. Этот метод широко применяется в растениеводстве. Г. а. пользуются при изучении взаимодействия генов в первом гибридном поколении. Г. а. является главным методом генетического анализа. Отличительные особенности метода: 1) целенаправленный подбор родителей – Р (от лат «парент»); 2) чистые линии, т.е растения в потомстве которых не наблюдалось разнообразия по изучаемому признаку ( только желтые или только зелёные); 3) альтернативные признаки по типу « или – или» ( желтые или зелёные); 4) строгий количественный учет наследования признаков у гибридов; 3) индивидуальная оценка потомства от каждого родителя в ряду поколений. Генетическая символика. Предложена Г. Менделем, используется для записи результатов скрещиваний: Р — родители; F — потомство, число внизу или сразу после буквы указывает на порядковый номер поколения (F1 — гибриды первого поколения — прямые потомки родителей, F2 — гибриды второго поколения — возникают в результате скрещивания между собой гибридов F1); × — значок скрещивания; G — мужская особь; E — женская особь; A — доминантный ген, а — рецессивный ген; АА — гомозигота по доминанте, аа — гомозигота по рецессиву, Аа — гетерозигота. Законы Менделя носят статистический характер(выполняются на большом количестве особей) и являются универсальными, т.е. при половом размножении они присущи всем живым организмам. Для проявления законов Менделя необходимо соблюдать ряд условий: 1) гены разных аллельных пар должны находиться в разных хромосомах; 2) между генами не должно быть сцепления и взаимодействия (кроме полного доминирования); 3) должна быть равная вероятность образования гамет и зигот разного типа и равная вероятность выживания организмов с разными генотипами (не должно быть летальных генов); 4) должна быть 100% пенетрантность гена, отсутствовать плейотропное действие и мутации гена, т.е. полное проявление признака независимо от условий развития организма. Изменение расщепления при неравновероятном образовании гибридом разных сортов гамет, при неравновероятном сочетании гамет в оплодотворении, при неравной жизнеспособности зигот, а также отклонения от ожидаемого расщепления по законам Менделя за счет летальных генов создают элемент случайности в расщеплении, поэтому при его анализе необходимо применять специальные математические методы, которые позволяют решить, является ли отклонение от теоретически ожидаемого расщепления (3:1, 1:1 и т. п.) неслучайным, вызванным закономерным влиянием каких-то факторов, нарушающих расщепление (например, гибель зигот определенного генотипа), или оно случайно и обусловлено, например, малой величиной анализируемого материала (выборки). По теории вероятностей отклонение фактически полученных данных от теоретически ожидаемых чаще может проявиться при изучении малого по объему материала (малая выборка) благодаря влиянию случайных причин. Для статистической оценки случайности отклонения применяют метод хи-квадрат.

 

Закономерности наследования при моногибридном скрещивании, открытые Г. Менделем. Факториальная гипотеза Г. Менделя. Закон "чистоты гамет".

   

Представление об аллелях и их взаимодействиях: полное и неполное доминирование, кодоминирование. Анализирующее скрещивание, анализ типов и соотношения гамет у гибридов. Относительный характер доминирования. Возможные биохимические механизмы доминирования.

Аллельные гены – гены, определяющие развитие альтернативных признаков. Они располагаются в одинаковых локусах гомологичных хромосом. Аллель – форма существования (проявления) гена. При полном дом-нии один ген полностью подавляет проявление другого гена (выпол-ся законы Менделя), при этом гомозиготы по домин-му признаку и гетерозиготы фенотипически неотличимы. При неполном доминировании (промеж-ом наследовании) доминантный ген не полностью подавляет проявление действия рецес-ого гена. У гибридов первого поколения наблюд-ся промежуточное наследование, а во втором поколении - расщепление по фенотипу и генотипу одинаково 1:2:1 (прояв-ся доза действия генов). Напр., если скрестить растения душистого горошка с красными и белыми цветами первое поколение будет иметь розовые цветки. При кодоминировании гены одной аллельной пары равнозначны, ни один из них не подавляет действия другого; если они оба находятся в генотипе, оба проявляют свое действие. Одновр-ое присутствие в генотипе генов JА и JВ обусловливает наличие в эритроцитах антигенов А и В (IV группа крови). Гены JА и JВ не подавляют друг друга - они яв-ся равноценными, кодоминантными. Гомозиготность, состояние следственного аппарата организма, при котором гомологичные хромосомы имеют одну и ту же форму данного гена. Переход гена в гомозиготное состояние приводит к проявлению в структуре и функции организма (фенотипе) рецессивных аллелей, эффект которых при гетерозиготности подавляется доминантными аллелями. Тестом на Гомозиготность служит отсутствие расщепления при определённых видах скрещивания. Гомозиготный организм образует по данному гену только один вид гамет. Гетерозиготность - состояние, при котором его гомологичные хромосомы несут разные формы (аллели) того или иного гена или различаются по взаиморасположению генов («структурная Гетерозиготность»). Структурная Гетерозиготность возникает при хромосомной перестройке одной из гомологичных хромосом, её можно обнаружить в мейозе или митозе. Выявляется Гетерозиготность при помощи анализирующего скрещивания. Гетерозиготность, как правило, — следствие полового процесса, но может возникнуть в результате мутации (например, у гомозиготы АА один из аллелей мутировал: АА'). При Гетерозиготность эффект вредных и летальных рецессивных аллелей подавляется присутствием соответствующего доминантного аллеля и проявляется только при переходе этого гена в гомозиготное состояние. Поэтому Гетерозиготность широко распространена в природных популяциях и является, по-видимому, одной из причин гетерозиса. Маскирующее действие доминантных аллелей при Гетерозиготность — причина сохранения и распространения в популяции вредных рецессивных аллелей (т. н. гетерозиготное носительство). Существование множественных аллелей само по себе указывает на относительный характер доминирования, на то, что оно проявляется только в конкретных условиях генотипической среды. На биохимическом уровне часто наблюдается совместное доминирование аллелей одного гена: каждый из них дает свой вариант генопродукта – белка или другого вещества (при этом нуль–аллели дают отсутствие генопродукта).

 

Закономерности наследования в ди- и полигибридных скрещиваниях, при моногенном контроле каждого признака. Статистический характер расщеплений. Общая формула расщеплений при независимом наследовании. Условия осуществления "менделевских" расщеплений.

Закон единообразия гибридов первого поколения. Проявление у гибридов признака только одного из родителей Мендель назвал доминированием. При скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей. Некоторые противоположные признаки находятся не в отношении полного доминирования (когда один всегда подавляет другой у гетерозиготных особей), а в отношении неполного доминирования. Например, при скрещивании чистых линий львиного зева с пурпурными и белыми цветками особи первого поколения имеют розовые цветки. Явления кодоминирования и неполного доминирования признаков слегка видоизменяет первый закон Менделя: «Гибриды первого поколения от скрещивания чистых линий особей с противоположными признаками всегда одинаковы по этому признаку: проявляют доминирующий признак, если признаки находятся в отношении доминирования, или смешанный (промежуточный) признак, если они находятся в отношении кодоминирования (неполного доминирования)». Закон расщепления, или второй закон Менделя: при скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1. Скрещиванием организмов двух чистых линий, различающихся по проявлениям одного изучаемого признака, за которые отвечают аллели одного гена, называется моногибридное скрещивание. Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть — рецессивный, называется расщеплением. Следовательно, расщепление — это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении. Закон независимого наследования (третий закон Менделя) — при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании). Когда скрещивались растения, отличающиеся по нескольким признакам, таким как белые и пурпурные цветы и желтые или зелёные горошины, наследование каждого из признаков следовало первым двум законам и в потомстве они комбинировались таким образом, как будто их наследование происходило независимо друг от друга. Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1, то есть 9:16 были с пурпурными цветами и желтыми горошинами, 3:16 с белыми цветами и желтыми горошинами, 3:16 с пурпурными цветами и зелёными горошинами, 1:16 с белыми цветами и зелёными горошинами. В соответствии с законами Менделя наследуются только моногенные признаки. Если за фенотипический признак отвечает более одного гена (а таких признаков абсолютное большинство), он имеет более сложный характер наследования. Условия выполнения закона расщепления при моногибридном скрещивании Расщепление 3 : 1 по фенотипу и 1 : 2 : 1 по генотипу выполняется приближенно и лишь при следующих условиях: Изучается большое число скрещиваний (большое число потомков). Гаметы, содержащие аллели А и а, образуются в равном числе (обладают равной жизнеспособностью). Нет избирательного оплодотворения: гаметы, содержащие любой аллель, сливаются друг с другом с равной вероятностью. Зиготы (зародыши) с разными генотипами одинаково жизнеспособны. Условия выполнения закона независимого наследования Все условия, необходимые для выполнения закона расщепления. Расположение генов, отвечающих за изучаемые признаки, в разных парах хромосом (несцепленность). Условия выполнения закона чистоты гамет Нормальный ход мейоза. В результате нерасхождения хромосом в одну гамету могут попасть обе гомологичные хромосомы из пары. В этом случае гамета будет нести по паре аллелей всех генов, которые содержатся в данной паре хромосом.

Отклонения от менделевских расщеплений при ди- и полигенном контроле признаков. Неаллельные взаимодействия: комплементарность, эпистаз, полимерия.

Биохимические основы неаллельных взаимодействий. Плейотропное действие генов. Пенентрантность и экспрессивность.

 

Половые хромосомы, гомо- и гетерогаметный пол; типы хромосомного определения пола. Наследование признаков, сцепленных с полом.

 

Значение реципрокных скрещиваний для изучения сцепленных с полом признаков. Балансовая теория определения пола. Гинандроморфизм.

 

Значение работ школы Т. Моргана в изучении сцепленного наследования признаков. Особенности наследования при сцеплении. Группы сцепления.

   

Кроссинговер. Доказательства происхождения кроссинговера в мейозе и митозе на стадии четырех нитей. Значение анализирующего скрещивания и тетрадного анализа при изучении кроссинговера.

Открытие кроссинговера. При допущении размещения в одной хромосоме более одного гена встает вопрос, могут ли аллели одного гена в гомологичной паре хромосом меняться местами, перемещаясь из одной гомологичной хромосомы в другую. Если бы такой процесс не происходил, то гены комбинировались бы только путем случайного расхождения негомологичных хромосом в мейозе, а гены, находящиеся в одной паре гомологичных хромосом, наследовались бы всегда сцеплено - группой. Исследования Т. Моргана и его школы показали, что в гомологичной паре хромосом регулярно происходит обмен генами. Процесс обмена идентичными участками гомологичных хромосом с содержащимися в них генами называют перекрестом хромосом или кроссинговером. Кроссинговер обеспечивает новые сочетания генов, находящихся в гомологичных хромосомах. Явление кроссинговера, так же как и сцепление, оказалось общим для всех животных, растений и микроорганизмов. Наличие обмена идентичными участками между гомологичными хромосомами обеспечивает обмен или рекомбинацию генов и тем самым значительно увеличивает роль комбинативной изменчивости в эволюции. Генетический анализ кроссинговера. О перекресте хромосом можно судить по частоте возникновения организмов с новым сочетанием признаков. Такие организмы называют рекомбинантами. Рассмотрим один из классических опытов Моргана на дрозофилы, позволивший ему доказать, что гены расположены в хромосомах в определенном порядке. У дрозофилы рецессивный ген черной окраски тела обозначается b, а его доминантная аллель, определяющая дикую серую окраску, - b+, ген рудиментарных крыльев - vg, нормальных - vg+. При скрещивании мух, различающихся по двум парам сцепленных признаков, серых с рудиментарными крыльями b+vg½½b+vg и черных с нормальными крыльями bvg+½½bvg+ - гибриды F1 b+vg½½ bvg+ серые с нормальными крыльями. Два анализирующих скрещивания: в одном дигетерозиготой является самец, в другом — самка. Если гибридные самцы скрещиваются с самками, гомозиготными по обоим рецессивным генам (♀bvg½½bvg ♂ Х b+vg½½bvg+), то в потомстве получается расщепление в отношении 1 серотелая муха с рудиментарными крыльями: 1 чернотелая с нормальными крыльями. Следовательно, данная дигетерозигота образует только два сорта гамет (b+vg и b+vg) вместо четырех, причем сочетание генов, в гаметах самца соответствует тому, которое было у его родителей. Исходя из указанного расщепления, следует предположить, что у самца не происходит обмен участками гомологичных хромосом. Действительно, у самцов дрозофилы как в аутосомах, так и в половых хромосомах, кроссинговер в норме не происходит, благодаря чему наблюдается полное сцепление генов, находящихся в одной хромосоме. Может возникнуть предположение, что серая окраска тела и рудиментарные крылья, а также черное тело и нормальные крылья - это пары признаков, наследующихся вместе вследствие плейотропного действия одного гена. Однако если взять для анализа гетерозиготных самок, а не самцов, то в Fb, наблюдается иное расщепление. Кроме родительских комбинаций признаков, появляются новые – мухи с черным телом и рудиментарными крыльями, а также с серым телом и нормальными крыльями. В этом скрещивании сцепление тех же генов нарушается за счет того, что гены в гомологичных хромосомах поменялись местами благодаря кроссинговеру. Гаметы с хромосомами, претерпевшими кроссннговер, называют кроссоверными, а с непретерпевшими – некроссоверными. Соответственно организмы, возникшие от сочетания кроссоверных гамет гибрида с гаметами анализатора, называют кроссоверами или рекомбинантами, а возникшие за счет некроссоверных гамет гибрида — некроссоверными или нерекомбинантными. Механизм кроссинговера Мейотический перекрест. Еще до открытия перекреста хромосом генетическими методами цитологии, изучая профазу мейоза, наблюдали явление взаимного обвивания хромосом, образования ими Х-образных фигур — хиазм (z-греческая буква «хи»). Механизм перекреста хромосом связан с поведением гомологичных хромосом в профазе I мейоза. В профазе I гомологичные хромосомы конъюгируют идентичными участками. Каждая хромосома в биваленте состоит из двух хроматид, а бивалент соответственно из четырех. Таким образом, конъюгация - единственный момент, когда может осуществляться кроссинговер между гомологичными хромосомами. Итак, кроссинговер происходит на стадии четырех хроматид и приурочен к образованию хиазм. Если в одном биваленте произошел не один обмен, а два и более, то в этом случае образуется несколько хиазм. Поскольку в биваленте четыре хроматиды, то, очевидно, каждая из них имеет равную вероятность обменяться участками с любой другой. При этом в обмене могут участвовать две, три или четыре хроматиды. До сих пор рассматривался кроссинговер между несестринскими хроматидами. Обмен внутри сестринских хроматид не может приводить к рекомбинациям, поскольку они генетически идентичны, и в силу этого такой обмен не имеет смысла в качестве биологического механизма комбинативной изменчивости. Соматический (митотический) кроссинговер. Как уже говорилось, кроссинговер происходит в профазе 1 мейоза при образовании гамет. Однако существует соматический или митотическии кроссинговер, который осуществляется при митотическом делении соматических клеток главным образом эмбриональных тканей. Известно, что гомологичные хромосомы в профазе митоза обычно не конъюгируют и располагаются независимо друг от друга. Однако иногда, удается наблюдать синапсис гомологичных хромосом и фигуры, похожие на хиазмы, но при этом редукции числа хромосом не наблюдается. Соматический кроссинговер может приводить к мозаичности в проявлении признаков. Учет кроссинговера при тетрадном анализе. У высших организмов о кроссинговере, происшедшем в профазе мейоза, судят по частоте кроссоверных особей-рекомбинантов, считая, что появление их отражает соотношение кроссоверных и некроссоверных гамет. Для прямого доказательства соответствия рекомбинантных зигот кроссоверным гаметам необходимо определять результаты кроссинговера непосредственно по гаплоидным продуктам мейоза. При этом гены должны проявлять свое действие в гаплофазе. Объектом, на котором удалось осуществить подобное исследование, явился, например, плесневой гриб (Neurospora crassa), большая часть жизненного цикла которого приходится на гаплофазу, а диплоидная фаза очень короткая. Вскоре после оплодотворения зигота приступает к мейотическому делению, которое приводит к образованию аска — сумки гаплоидными спорами. При делениях веретено своей осью совпадает с продольной осью сумки. Поэтому продукты мейоза – споры – располагаются в сумке цепочкой. В мейозе протекают два обычных деления созревания, затем одно митотическое, в результате чего в каждой сумке образуется 8 аскоспор. Поскольку у нейроспоры имеется возможность непосредственно определять результаты кроссинговера по продуктам мейоза, установление в этом случае характера расщепления будет прямым доказательством того, что расщепление и кроссинговер осуществляются в мейозе. Этот метод является разновидностью уже описанного тетрадного анализа, но применительно к сцепленным генам. В случае моногибридного скрещивания ожидается расщепление по гаплоидным продуктам (спорам) в соотношении 1А:1а. В асках среди 8 спор - 4 окрашенные (А) и 4 неокрашенные (а) споры, т.е. наблюдается расщепление 1: 1. При отсутствии кроссинговепа между геном и центромерой порядок расположения спор в сумке таков: ААААаааа. Если порядок аскоспор меняется, например ААааААаа, то это будет говорить о происшедшем перекресте между локусом а и центромерой. Расположение спор будет зависеть от расхождения хромосом в первом и втором мейотических делениях. Аллели А и а могут распределиться в сумке по спорам и в ином порядке: ааААааАА, ааААААаа, ААааааАА. В рассматриваемом случае перекрест происходит на участке между локусом данного гена и центромерой. Чем дальше ген а будет удален от центромеры, тем вероятнее перекрест и, следовательно, больше будет кроссоверных асков. Если перекрест произойдет между дистальным концом хромосомы и геном а, то кроссоверное расположение аскоспор не будет обнаружено. Изменение порядка спор в аске при кроссинговере между геном и центромерой возможно только в случае, если он осуществляется на стадии четырех нитей, т. е. между хроматидами. Если бы рекомбинация происходила в момент, когда каждая хромосома еще не удвоилась, порядок спор в аске не изменился бы. Следовательно, изменение порядка спор в данном случае служит доказательством того, что кроссинговер осуществляется между несестринскими хроматидами, т. е. на стадии четырех нитей. Поэтому, говоря о механизме и генетических последствиях кроссинговера, лишь для простоты объясняют его обменом между целыми хромосомами; на самом деле обмен происходит между хроматидами. Указанные особенности нейроспоры дают возможность определить место гена в хромосоме, учитывая расщепление только по одной паре аллелей, что невозможно у диплоидных организмов, для которых нельзя провести тетрадный анализ. Таким образом, тетрадный анализ доказывает, что как менделевское расщепление, так и кроссинговер основаны на закономерностях мейоза.

Цитологические доказательства кроссинговера. Множественные перекресты. Интерференция. Линейное расположение генов в хромосомах.

Основные положения хромосомной теории наследственности по Т.Моргану. Генетический карты, принцип их построения у эукариот. Использование данных цитогенетического анализа для локализации генов.

На основании экспериментов с плодовой мушкой дрозофилой Морганом и его учениками была разработана хромосомная теория наследственности. Эта теория включает следующие положения: 1. Ген – это элементарный наследственный фактор (термин «элементарный» означает «неделимый без потери качества»). Ген представляет собой участок хромосомы, отвечающий за развитие определенного признака. Иначе говоря, гены локализованы в хромосомах. 2. В одной хромосоме могут содержаться тысячи генов, расположенных линейно (подобно бусинкам на нитке). Эти гены образуют группы сцепления. Число групп сцепления равно числу хромосом в гаплоидном наборе. 3. Если гены сцеплены между собой, то возникает эффект сцепленного наследования признаков, т.е. несколько признаков наследуются так, как будто они контролируются одним геном. 4. Сцепление генов не абсолютно: в большинстве случаев гомологичные хромосомы обмениваются аллелями в результате перекреста (кроссинговера) в профазе первого деления мейоза. В результате кроссинговера образуются кроссоверные хромосомы. С участием кроссоверных хромосом в последующих поколениях у кроссоверных особей должны появляться новые сочетания признаков. 5. Вероятность появления новых сочетаний признаков вследствие кроссинговера прямо пропорциональна физическому расстоянию между генами. Это позволяет определять относительное расстояние между генами и строить генетические (кроссоверные) карты разных видов организмов. Генетические карты хромосом – схемы относительного расположения сцепленных между собой генов. Г. к. х. отображают реально существующий линейный порядок размещения генов в хромосомах, позволяют сознательно подбирать пары признаков при скрещиваниях, а также предсказывать особенности наследования и проявления различных признаков у изучаемых организмов. Обычно расстояние между генами на Г. к. х. выражают как % кроссинговера (отношение числа мутантных особей, отличающихся от родителей иным сочетанием генов, к общему количеству изученных особей); единица этого расстояния — морганида — соответствует частоте кроссинговера в 1%. Г. к.х. составляют для каждой пары гомологичных хромосом. Группы сцепления нумеруют последовательно, по мере их обнаружения. Кроме номера группы сцепления, указывают полные или сокращённые названия мутантных генов, их расстояния в морганидах от одного из концов хромосомы, принятого за нулевую точку, а также место центромеры. Составить Г. к. х. можно только для объектов, у которых изучено большое число мутантных генов. Например, у дрозофилы идентифицировано свыше 500 генов, локализованных в её 4 группах сцепления, у кукурузы — около 400 генов, распределенных в 10 группах сцепления. У менее изученных объектов число обнаруженных групп сцепления меньше гаплоидного числа хромосом. Так, у домовой мыши выявлено около 200 генов, образующих 15 групп сцепления (на самом деле их 20); у кур изучено пока всего 8 из 39. У человека из ожидаемых 23 групп сцепления (23 пары хромосом)идентифицировано только 10, причём в каждой группе известно небольшое число генов; наиболее подробные карты составлены для половых хромосом.

Цитологические карты хромосом. Митотический кроссинговер и его использование для картирования хромосом. Построение физических карт хромосом с помощью методов молекулярной биологии.

Г. к. х. отображают реально сущ-ий линейный порядок размещения генов в хромосомах, позволяют сознательно подбирать пары признаков при скрещ-х, а также предсказ. особенности насл-я и проявл.разл. признаков у изуч. орг-в. Имея Г.к. х., можно по наследованию «сигнального» гена, тесно сцепленного с изучаемым,контролир. передачу потомству генов, обусловливающих развитие трудноанализируемых признаков; напр., ген, определяющий эндосперм у кукурузы и находящийся в 9-й хромосоме, сцеплен с геном, определяющим пониж.жизнеспособность раст. Обычно расстояние между генами на Г. к. х. выражают как % кроссинговера (отношение числа мутантных особей, отличающихся отродителей иным сочетанием генов, к общему количеству изученных особей); единицаэтого расстояния — морганида — соответствует частоте кроссинговера в 1%.Г. к.х. составляют для каждой пары гомологичных хромосом. Группы сцепления нумеруют последовательно, по мере их обнаруж. Кроме номера группы сцепления,указ. полные или сокращ. назв. мутантных генов, их расстояния в морганидах от одного из концов хр., принятого за нулевую точку, а также место центромеры. Составить Г. к. х. можно только для объектов, у кот.изуч. большое число мутантных генов. У чел. из ожидаемых 23 групп сцепления (23 пары хромосом)идентифицировано только 10, причём в каждой группе известно небольшое числогенов; наиболее подробные карты составлены для половых хромосом. Цитологич. к. х. составляют для организмов, для которых обычно уже имеются генетические карты хромосом. Каждое место расположения гена (локус) на г.к. организма, установленное на основе частоты перекреста участков хромосом (кроссинговера),на Ц. к. х. привязано к определённому, реально существующему участку хромосомы,что служит одним из основных доказательств хромосомнойтеории наследственности. Для построения Ц. к. х. используют данные анализа хр.перестроек (вставки, делеции и др.) и, сопоставляя изм.морф.приз. хромосом при этих перестройках с изм.ген. свойств орг., устанавливают место того или иного гена вхромосоме. Пользуясь методом хромосомных перестроек, амер. генетик К. Бриджессоставил в 1935 подробную Ц. к. х. плодовой мушки дрозофилы, наиболее полно генетически изуч. организма. Гигантские хр. насек. отр.двукрыл. оказались самыми удоб.для построения Ц. к. х., т.к. наряду сбольшими размерами обладают чёткой морф. очерченностью: каждый участок этих хр. имеет свой опр. и чёткий рис., обусловл.характер. чередов. по длине ярко окрашиваемых участков (дисков) и слабоокрашиваемых (междисков). Цит. мет. легко определить отсут.участка хромосомы или перенос его в др. место. Сопоставление Ц. к. х. с генетич. показало, что физ. рас-е между генами в хр. несоответ. генетич. (видимо, частота кроссинговера неодинакова в разныхучастках хромосом), поэтому плотность распределения генов на цитологических игенетических картах хромосом различна. Так было установлено важное генетическое явл. — неравномерность частот перекреста по длине хромосомы. Линейное располож. генов и их последовательность, установл. Ген-ми методами, подтверждаются Ц. к. х. Митотический кроссинговер(соматический)..Кросс., кот. может происх. не только во время мейоза, но и митоза, М.к. может происходить в сомат. Кл. в теч. всего кл.о цикла. Может быть обнаружен, если он осущ. на стадии четырех хроматид. При этом в интерфазе гомологич.хр-ы коньюгируют и входят в митотическое деление спаренными.Частота м. кросс. значит.о ниже мейотического. Тем не менее его также можно использовать для генетич. картирования. Мейотический кроссинговер осуществляется после того, как гомологич. хр. в зиготенной стадии профазы I соединяются в пары, образуя биваленты. В профазе I каждая хромосома представлена двумя сестринскими хроматидами, и перекрест происх. между хроматидами. В отл. от ген. карт сцепления физические карты генома отраж. реаль. расстояние между маркерами, выражаемое в парах оснований. Ф. к. различаются по степени их разрешения, т.е. по тем деталям структуры генома, которые на них представлены. Ф.к. генома человека макс. разрешения будет содерж. пол. нуклеотидную последовательность всех его хромосом. На др. полюсе ф. к. с мин. разреш. нах. хромосомные (цитогенетические) карты генома. При построении карт генома человека высокого разрешения экспериментально реализуются два альтернативных подхода, получивших названия: картирования сверху вниз (top-down mapping) и картирования снизу вверх (bottom-up mapping). При кар. сверху вниз исход. в анализе явл. препарат ДНК индивидуальной хромосомы чел.. ДНК разрезается крупнощепящими рестриктазами (например, NotI ) на длинные фрагменты, кот. после раздел. электрофорезом в импульсном электрическом поле подверг.дальнейш. рестрикционному анализу с другими рестриктазами. В результате получают макрорестрикционную карту, на кот. достаточно полно представлены все последоват. исслед-й хромосомы или ее части, однако ее разрешение невысоко.

Организация генетического аппарата у бактерий. Представление о плазмидах, эписомах и мигрирующих генетических элементах (инсерционные последовательности, транспозоны).

Генетика — это наука, изучающая наследственность и изменчивость. Микроорганизмы обладают способностью изменять свои основные признаки: морфологические (строение); культуральные (рост на питательных средах); биохимические или ферментативные признаки (добавление определенных веществ в питательную среду может вызвать активацию фермента, который до этого находится в латентном состоянии); биологические свойства — может меняться степень патогенности, на этом основаны способы приготовления живых вакцин. Например, при 12—14-дневном культивировании возбудителя сибирской язвы при t° — 42—43°С микробы потеряли способность вызывать заболевание у животных, но сохранили свои иммуногенные свойства. Генетическая информация в клетках бактерий заключена в ДНК (у некоторых вирусов РНК). Молекула ДНК состоит из двух нитей, каждая из которых спирально закручена относительно другой. При делении клетки спираль удваивается. И вновь образуется двунитчатая молекула ДНК. В состав молекулы ДНК входят 4 азотистых основания — аденин, гуанин, цитозин, тимин. Порядок расположения в цепи у разных организмов определяет их наследственную информацию, закодированную в ДНК. Плазмида – внехромосомный самовоспроизводящийся генетич. элемент (фактор наследственности) бактерий и нек-рых др. организмов. Представляет собой кольцевую двухцепочечную молекулу ДНК, закрученную в суперспираль. Размеры П. необычайно широко варьируют от 2 тыс. до неск. сотен тысяч пар оснований; нек-рые из них содержат 1-3 гена, другие достигают 10-20% размера бактериальной хромосомы. Нек-рые П., наз. эписомами, обладают способностью существовать в двух состояниях – автономном и интегрированном. В автономном состоянии эписома не является частью бактериальной хромосомы и реплицируется (самовоспроизводится) независимо, хотя и синхронно с ней. В интегрир. состоянии она реплицируется в составе хромосомы. Способность обратимо включаться в состав хромосомы часто сопряжена с наличием в эписомах мигрирующих генетических элементов. Большинство П. может передаваться от одной бактерии к другой при конъюгации клеток (трансмиссибельные П.). Такие П. способны провоцировать конъюгацию между бактериями и тем самым обеспечивают собственную миграцию от клетки к клетке и распространение среди бактерий. Нетрансмиссибельные П. передаются благодаря конъюгативным плазмидам-помощникам. Во мн. случаях для переноса П. между клетками необязательна конъюгация последних. Так, мелкие П. могут передаваться в виде коинтегратов с бактериофагами (вирусами микробов). Число копий П. в клетке зависит от их генетич. особенностей. П., находящиеся под "ослабленным контролем", могут реплицироваться до тех пор, пока каждая клетка не будет содержать в среднем от 10 до 200 копий. П., находящиеся под "строгим контролем", реплицируются примерно с той же скоростью, что и хромосома, и содержатся в клетке в виде одной или неск. копий. В обоих случаях благодаря контролируемой репликации число П. в клетке поддерживается постоянным в ряду поколений. Помимо ряда общих ф-ций, свойственных очень многим П. (таких, как автономная репликация или ф-ция переноса), существует множество спец. ф-ций, детерминируемых той или иной П. У бактерий наиб. изучены три главные группы плазмид: F-П. (факторы фертильности) ответственны за половой процесс, R-П. (факторы резистентности) обеспечивают устойчивость бактериальных клеток к действию антибиотиков (напр., к стрептомицину и тетрациклину) и сульфаниламидным препаратам, в Col-П. (колициногенных факторах) локализованы гены синтеза колицинов (бактериоцинов) – токсичных белков, к-рые не действуют на производящую их клетку, но убивают др. бактерии. Обусловленная П. устойчивость бактерий к антибиотикам основана на разных механизмах, но чаще всего на инактивации последних ферментами (напр., b-лактамазы), кодируемых П., или на избират. изменении проницаемости клеточной оболочки. Среди П., обеспечивающих устойчивость бактерий к антибиотикам, осн. массу составляют т. наз. факторы множеств, резистентности, несущие сразу неск. соответствующих детерминант. С помощью трансмиссибельных П. детерминанты резистентности легко могут распространяться между видами, способными к конъюгации. На такие П. гены резистентности могут передаваться с помощью транспозонов. П. не являются неотъемлемой составной частью бактериальной клетки, однако их наличие расширяет ее генетич. возможности. П. позволяют бактериям получать энергию необычными способами, напр. окислением водорода или метана. П. играют важную роль в эволюции бактерий, особенно в их быстрой адаптации к меняющимся факторам среды. П. с ослабленным контролем репликации широко применяется в качестве векторных молекул в генетической инженерии для решения биотехнол. задач. Мигрирующие генетические элементы (мобильные гены, прыгающие гены), дискретные фрагменты (сегменты) ДНК, способные встраиваться в разные участки генома; их расположение на хромосомах может меняться как в процессе историч. развития мира организмов, так и в пределах жизни одного индивидуума. Найдены практически во всех изученных организмах – от бактерий до человека. Они весьма разнятся по своему нуклеотидному составу и той роли, к-рую они играют в клетке. У прокариот (бактерии и синезеленые водоросли) выделено неск. осн. групп М.г. это – IS- и Tn-элементы, эписомы, а также нек-рые бактериофаги, или фаги (вирусы бактерий, способные ее поражать, репродуцироваться в ней и вызывать ее гибель). IS-элементы – простые вставочные (ин-серционные) последовательности; содержат от 700 до 1500 пар нуклеотидов. Эти сегменты ДНК имеют инвертир. повторы на концах, содержащие обычно неск. десятков нуклеотидных пар, и не содержат никаких генов, кроме тех, к-рые необходимы для их перемещения (транспозиции) по геному. Они встречаются в нек-рых плазмидах (внехромосомные носители наследственности) и умеренных фагах (способны существовать в клетке в форме профага). Транспозиции IS-элементов не сопряжены с их исключением из мест исходной локализации в плазмидах или хромосоме; при транспозиции IS-элемент удваивается и одна его копия остается на прежнем месте, а другая попадает в новый локус (местоположение гена в хромосоме или плазмиде). Таким образом, транспозиции этого элемента сопряжены с репликацией (удвоением) его ДНК. Обычно IS-элементы встраиваются (интегрируют) в разл. места бактериального генома, однако нек-рые участки оказываются более предпочтительными, чем другие. Встраивание и исключение этих элементов происходит с высокой точностью, что свидетельствует об участии в этих процессах ферментов, узнающих инвертир. концевые повторы IS-элементов. Ферментные системы, обусловливающие транспозиции IS-элементов, по крайней мере, частично кодируются их собств. ДНК. Значение IS-элементов для эволюции бактерий связано с тем, что эти элементы при своих перемещениях инактивируют разл. гены или нарушают их нормальную регуляцию. Помимо прямого влияния на экспрессию гена (развития признака, контролируемого данным геном) вследствие транспозиции инсерционной последовательности непосредственно в кодирующую часть гена или его регуляторную зону, эти М. г. э. могут влиять также на транскрипцию (биосинтез информационной РНК на матрице ДНК) окружающих их последовательностей ДНК генома. Это происходит вследствие того, что мн. IS-элементы содержат промоторные (инициирующие транскрипцию) и терминаторные (прекращающие транскрипцию) участки ДНК. Транспозиции IS-элементов могут вызывать слияние двух не связанных ранее генов или оперонов (совокупность связанных между собой генов и прилегающих к ним регуляторных участков) с образованием новых функцион. единиц, а также индуцировать все виды хромосомных перестроек. Соединение разнородных репликонов (элементарная генетич. структура, способная к самокопированию) имеет большое биол. значение, т. к. объединяет ранее разобщенные генетич. детерминанты, подчас принадлежащие разным видам организмов. Tn-элементы (сложные перемещающиеся элементы, или транспозоны) принципиально отличаются от IS-элементов только тем, что содержат дополнит. структурные гены, не имеющие отношения к ф-ции транспозиции. Известно много транспозонов, в состав к-рых входят гены устойчивости к антибиотикам, тяжелым металлам и др. ядам. При этом один и тот же транспозон иногда несет целый набор детерминант резистентности (т. наз. V-детерминанты). Такие транспозоны наиб. широко распространены, т.к. представляют ценность для селекции бактерий. Существуют транспозоны, содержащие гены, к-рые кодируют токсины, а также свойственные данному организму ферменты. Как правило, Tn-элементы несут на концах целые или частично измененные IS-элементы, к-рые сообщают им способность перемещаться по геному и вызывать в нем те же изменения, что и своб. IS-элементы. Транспозоны вместе с плазмидами и фагами (в к-рые они легко интегрируются) способны осуществлять обмен разл. заключенных в них генов между весьма отдаленными видами бактерий, поэтому они играют чрезвычайно важную роль в эволюции бактерий, включая адаптацию их к лек. в-вам и продуцирования ими новых токсинов. Транспозиция Tn-элементов осуществляется по такому же механизму, как и IS-элементов, и также включает стадию трансляции. Большинство транспозонов не выбирает для своего включения строго определенные последовательности в ДНК. Однако обычно они предпочитают нек-рые районы хромосом и даже специфич. участки, причем разные Тn-элементы различаются по специфичности выбора мест интеграции. К М.г.э. прокариот относят также умеренные фаги. l-Фаги (лямбдоидные фаги) обычно встраиваются в одно место хромосомы, но при определенных условиях могут располагаться и в др. участках генома. m-Фаги способны включаться в любые места бактериальной хромосомы, а также в ДНК мн. др. фагов и плазмид. Интеграция лямбдоидных фагов обеспечивается ферментной системой, состоящей из клеточных белков и белков, кодируемых геномом фага. m-Фаг во мн. отношениях сходен с IS- и Tn-элементами и отличается от них только тем, что может формировать вирусные частицы. Умеренные фаги способны вносить существ. изменения в структуру и функционирование бактериального генома благодаря двум процессам – интеграции фаговой ДНК в хромосому бактерии и трансдукции (переносу фагом бактериальных генов из одних клеток в другие). Важным отличием М. г. э. эукариот от таковых у бактерий является их способность при включении в тот или иной локус изменять св-ва ферментов (продуктов генов-мишеней), а не только прерывать их синтез.

26) Методы, применяемые в генетическом анализе у бактерий и бактериофагов: клональный анализ, метод селективных сред, метод отпечатков и др. До 40-х гг. 20 в. считалось, что, поскольку у микроорганизмов нет ядерного аппарата и мейоза, на них не распространяются законы Менделя и хромосомная теория наследственности. С начала 40-х гг. микроорганизмы становятся объектом интенсивных генетических исследований. Именно на них были решены многие кардинальные вопросы современной генетики. Так, первое указание на то, что материальным носителем наследственности служит дезоксирибонуклеиновая кислота (ДНК), было получено в опытах на пневмококках. Генетические исследования микроорганизмов особенно интенсивно стали развиваться после того, как американские генетики С. Лурия и М. Дельбрюк показали на кишечной палочке (Escherichia coli), что и бактерии подчиняются мутационным закономерностям. Ранее существовавшее представление об адекватной, адаптивной изменчивости у бактерий возникло вследствие методической ошибки, заключавшейся в изучении культуры как единицы изменчивости. Был предложен новый принцип изучения изменчивости у бактерий - клональный анализ, т. е. изучение потомства одной клетки - родоначальницы клона. Клональный анализ - м. исследования клеточных взаимодействий в процессе индивидуального развития путем формирования генетических мозаиков (изменение какой-то части организма, развивающейся из мутантной клетки.). Др.опред-е -- изучение потомства одной клетки - родоначальницы клона. Важной вехой в развитии генетики микроорганизмов явился разработанный американскими генетиками Дж. и Э. Ледербергами метод реплик, или отпечатков, позволивший доказать, что мутации возникают у бактерий независимо от условий культивирования, и, кроме того, значительно упростивший приёмы отбора вариантов микроорганизмов с желаемыми свойствами. Метод отпечатков-м. оперативного выявления биохимических мутаций у микроорганизмов; предложен Дж.Ледербергом в 1952, его суть состоит в “перепечатывании” бархатной “печаткой” колоний микроорганизма (в оригинале метода - E.coli), выросших на нормальной среде, в чашки Петри со средой, содержащей селективный агент, например, стрептомицин, - частота мутаций устойчивости к стрептомицину определяется по числу выросших “перепечатанных” колоний. Метод селективных средС. Н. Виноградский вместо агара или желатины применил гель кремниевой кислоты, иначе говоря, затвердевший силикатный клей с добавками Сахаров и солей, но без азота. Поэтому любая колония, выросшая на такой среде, автоматически оказывалась азот-фиксирующей: ведь необходимый для жизни азот она могла получить только из воздуха.М. сел. сред оказался очень эффективным. Дана задача: из многих миллиардов клеток «дикой», автотрофной бактерии отобрать те, которые потеряли способность синтезировать нез. а/к гистидин. С этой целью культуру бактерий выращивают в жид. ср. без гистидина, но с выс. концентрацией антибиотика пенициллина. Те клетки, которым гистидин не нужен, начинают расти: тут же оболочки их лопаются и бактерии погибают. Ведь пенициллин останавливает рост их оболочек, и увеличивающаяся в объеме цитоплазма разрывает кл.Нуждающиеся в гистидине ауксотрофы остаются живы — они без него не растут. Остается осадить культуру в центрифуге, отмыть от пениц. чистой средой и пересеять на твердую ср., содер. гистидин. Таким способом можно отобрать одну нужную бактерию из сотен миллионов и за сутки получить от нее многомиллионное потомство.

Особенности процессов, ведущих к рекомбинации у прокариот. Конъюгация у бактерий: половой фактор кишечной палочки. Методы генетического картирования при конъюгации. Кольцевая карта хромосом прокариот.

Мутационный процесс и поток генов могут создать в популяции изменчивость по единичным генам. Если в результате таких первичных процессов возникает аллельная изменчивость по двум или большему числу генов, то создаётся почва для действия вторичного процесса — рекомбинации, В результате рекомбинации новые аллели, носителями которых первоначально, вероятно, были разные особи, могут сочетаться в одном генотипе. За счет рекомбинации число различающихся генотипов в популяции может увеличиться; этот процесс превращает небольшой первоначальный запас изменчивости по множественным генам в гораздо более значительное количество генотипической изменчивости. Конъюгацией называется непосредственный контакт между клетками бактерий, сопровождаемый переносом генетического материала из клеток донора в клетки реципиента. Процесс конъюгации у бактерий E. coli (кишечной палочки) был открыт в 1946 г. Дж. Ледербергом и Е. Тэйтумом на основании генетического подхода. В основе полового процесса у бактерий лежит конъюгация клеток. Это явление выражается в появлении временной связи между клетками бактерий посредством образования цитоплазматического мостика. Такая связь создает условия для проникновения генетического материала из одной клетки бактерий в другую. При явлениях рекомбинаций у бактерий одна из линий служит донором, а другая реципиентом. донорные клетки (мужские клетки бактерий) характеризуются наличием у них особого фактора F+ . При конъюгации бактерий фактор F+ может переходить в pеципиентную женскую клетку F, превращая ее в мужскую клетку. Бактерии F, т. е. лишенные полового факторы, являются реципиентами. При конъюгации клеток F+ и F в последнюю часто переходит только половой фактор. Однако когда фактор F+ в клетки донора интегрируется с ее хромосомой, то конец хромосомы донора начинает регулярно проникать через цитоплазматический мостик в клетку реципиента, обусловливая появление клеток, способных к особо высокой частоте рекомбинаций, которые были обозначены символом Hfr (high frequency of recombination). Кольцевая структура генома. Оказалось, что различные штаммы Hfr переносят гены в клетки-реципиенты в неодинаковой последовательности. Сопоставление этих последовательностей показало, что все они согласуются с единой круговой генетической картой. Единая кольцевая молекула генома Е. соli содержит около 4000 тыс. последовательных нуклеотидов. Она может дополнительно включать F-фактор, имеющий кольцевую форму и состоящий из 60 тыс. п. н., а также другие плазмиды, профаги и иные необязательные элементы. В результате переноса всей хромосомы клетки – рецепиенты приобретают свойства донора. Методы генетического картирования при конъюгации. Проникновение генов донора в клетки реципиента подчиняется отчетливой временной последовательности. Специфический конец хромосомы бактерий Hfr входит в клетку реципиента и постепенно втягивает туда те гены, которые локализованы за ним вдоль по хромосоме. Перенос всего генома — это редкое событие. Таким образом, можно определить последовательность расположения генов и расстояние между ними, измеряя его в данном случае временем, проходящим от начала внедрения в клетку реципиента сначала одного, а за ним последующего гена. При конъюгации в клетку хозяина входит конец хромосомы донора О (от англ. origin — начало), являющейся ведущим локусом. Вслед за локусом О туда же постепенно втягиваются и остальные блоки генов. Хромосома при прерывании конъюгации рвется на разных участках. Фрагмент того или иного размера, входя в клетку хозяина, создает в ней частичную диплоидию. Возникает так называемая мерозигота, путем кроссинговера гены из фрагментов донора переходят в хромосому хозяина и создают в ней новый рекомбинантный генотип. Было открыто, что разные гены последовательно переходят из мужских; в женские клетки бактерий в разное, вполне определенное время. Э. Волльман и Ф. Жакоб разработали метод анализа, который позволил узнать, как бактерии обмениваются между собой генами. Это удалось сделать путем прерывания конъюгации бактерий в разные сроки после ее начала. Если смешать клетки штаммов Hfr и F в отношении 1: 20, то наступит быстрый контакт клеток этих двух штаммов друг с другом. После этого в разные интервалы времени конъюгация бактерий прерывалась механически, при встряхивании взвеси бактерий в гомогенизаторе. Такая обработка разъединяет конъюгирующие бактерии; цитоплазматический мостик, соединявший бактерии, обрывается, при этом разрывается и нить ДНК, проходящая сквозь него из клетки Hfr в клетку F. Перенос генов из хромосом бактерий с помощью их включения в половой фактор получил название сексдукции. В этом случае оказывается возможным получить диплоидию по отдельным генам и изучить доминантность аллелей. Т.о., существует два главных метода картирования хромосом при конъюгации бактерий. Первый из них — это картирование хромосом по градиенту передачи. В данном случае после часа совместной инкубации клеток донора и реципиента определяется абсолютное количество разных рекомбинаций. Этим путем оказывается возможно установить последовательность генов в хромосоме и величины расстояний между ними. Второй способ основан на определении времени прохождения фрагментов хромосомы разной длины из клеток Hfr в клетку F . Прерывая конъюгацию путем встряхивания смешанной культуры, можно подсчитать время, необходимое для появления рекомбинантов по тем или иным маркерам. Метод эффективен для определения расстояния между генами, измеряемого временем не меньшим, чем одна минута.

Генетическая рекомбинация у бактерий происходит не только при половом процессе. Обнаружены также рекомбинации ДНК, идущие при трансформации и трансдукции. В случаях трансформации материал природной ДНК вносится в клетку в качестве свободных фрагментов или фрагментов, захваченных плазмидами. При трансдукции такой материал захватывается вирусами и при инфицировании вносится в клетку.

 

Генетическая рекомбинация при трансформации. Трансдукция у бактерий. Общая и специфическая трансдукция. Использование трансформации и трансдукции для картирования генов.

Трансформация бактерий – это перенос ДНК, изолированной из одних клеток в другие. Длинные фрагменты молекулы ДНК успешно поглощаются клеткой. Для того чтобы ДНК проникла в бактериальные клетки, они должны находиться в состоянии компетентности. Возникновению компетентности, приобретаемой лишь частью клеток культуры обычно в середине логарифмической стадии роста, способствует особый белок, который вырабатывается в ходе роста культуры. Сначала ДНК связывается с поверхностью компетентных клеток. ДНК, связанная с компетентными клетками, расщепляется специальными нуклеазами до фрагментов, которые проникают в клетку. После попадания в бактерию двуцепочечная ДНК превращается в одно цепочечную: одна нить ДНК деградирует. На заключительной стадии происходит интеграция одноцепочечного трансформирующего фрагмента с ДНК клетки-реципиента. При этом репликация не требуется, и включаемый фрагмент физически объединяется с ДНК реципиента. Весь процесс трансформации завершается в течение 10—30 мин. Частота трансформации разных бактерий составляет около 1 %. Для некоторых бактерий показана трансформация в естественных условиях, например в организме инфицированного животного — для Васcilus рпеитоniае, а также в условиях культуры — для Васcilus subtilis. Это означает, что трансформация — не экзотический прием генетического анализа, а естественный биологический процесс. В то же время в последние годы в связи с развитием генной инженерии широко применяется плазмидная, или векторная, трансформация, которая заключается во введении в клетки бактерий, а также эукариот генов, интегрированных в естественные или искусственные плазмиды. Трансдукцией называют перенос генов из одних бактериальных клеток в другие при помощи бактериофага. Это явление в 1951 г. открыл Н. Зиндер. Известны два основных типа бактериофагов — вирулентные и умеренные. Первые после их размножения в клетке бактерии приводят к ее лизису. Они существуют либо в вегетативном (размножение внутри клетки), либо в зрелом (метаболически инертное состояние вне клетки) состоянии. Умеренные бактриофаги обладают способностью быть в состоянии профага. Профагом был назван геном фага, который включается в бактериальную хромосому, после чего этот геном приобретает способность ауторепродуцироваться вместе с хромосомой бактерии. Такие бактерии, несущие профаг, называют лизогенными. Эти бактерии, хотя они и содержат в своей хромосоме профаг, не имеют в себе инфекционных фаговых частиц. Существование профага является временным. При индукции профаг покидает хромосому бактерий, переходит в вегетативное состояние и размножается. В этом случае в клетке возникают зрелые фаговые частицы, которые вызывают ее лизис. Этот процесс можно вызвать искусственно. Оказалось, что, когда профаг освобождается из хромосомы бактерии, переходя в стадию вегетативного существования, он может уносить с собой часть хромосомы бактерий. При следующем инфицировании гены из фрагмента хромосомы бактерии, унесенного фагом, оказываются способными внедряться в хромосому нового реципиента. Особый интерес имеет так называемая зиготическая индукция, при которой индуцирующим агентом является конъюгация с клеткой Hfr, при последней происходит проникновение хромосомы с профагом из клетки Hfr в нелизогенную клетку F. Обычно при трансдукции переносятся отдельные гены. Однако иногда переносимый сегмент хромосомы содержит два или несколько генов. Анализ таких случаев множественной трансдукции позволил создать карты участков хромосом бактерий. Существует несколько типов трансдукции: общая или неспецифическая - профаг способен включаться в разные места хромосомы бактерии. Это обеспечивает возможность переноса различных локусов из хромосомы хозяина в хромосому реципиента. Перенос генов при общей трансдукции может привести к двум различным состояниям трансдуктантов: а) полная трансдукция - привнесенный ген наследуется стабильно, т.к. интегрирует с хромосомой реципиента; б) абортивная трансдукция – внесенный фрагмент не реплицируется и передается по одной линии при размножении трансдуктантов; 2. специфическая – происходит рекомбинация между фаговой и хромосомной бактериальной ДНК, поэтому фаговые трансдуцирующие частицы обязательно содержат ДНК обоих типов. При использовании рекомбинации по многим генам оказалось возможным построить генетические карты хромосом для генов фагов Т4, Т2, фага лямбда и др. С помощью ряда приемов удалось показать соответствие генетических карт положению генов непосредственно в хромосомах вирусов. При интенсивном перемешивании раствора ДНК происходит разрыв молекул ДНК. Можно добиться режима, при котором молекула ДНК рвется примерно пополам. При заражении бактерий половинками молекул было показано, что они несут в себе половину генетической карты. М. Мезельсон и Дж. Уэйгл показали наличие совпадения расстояния между генами на карте и размером хромосом фага лямбда, используя передачу изотопов при рекомбинировании ДНК фага. Эти генетические карты оказались замкнутыми в круг. Генетические карты кольцевых хромосом изучены для ряда вирусных частиц.

 

Закономерности нехромосомного наследования, отличие от хромосомного наследования. Методы изучения: реципрокные, возвратные и поглощающие скрещивания, метод трансплантации, биохимические методы.

Наследование, определяемое хромосомами, получило название ядерного или хромосомного. В тех же случаях, когда материальной основой наследования являются элементы цитоплазмы, оно называется нехромосомным или цитоплазматическим. Поскольку и у растений, и у животных яйцеклетка содержит много цитоплазмы, а мужская гамета ее, как правило, почти лишена, следует ожидать, что цитоплазматическое наследование, в отличие от хромосомного, должно осуществляться по материнской линии. Цитоплазматическое наследование не может характеризоваться такими строгими количественными закономерностями, как ядерное. Например, воздействие повышенной температурой на яйца самок наездника (Habrobracon juglandis) до оплодотворения приводит к изменению окраски тела у их потомства. В ряде случаев наследование признаков связано с особенностями цитоплазмы, возникающими в процессе индивидуального развития организма либо под влиянием факторов внешней среды (онтогенетическая или фенотипическая предетерминация), либо под влиянием генотипа (генотипическая предетерминация). В этом случае наследование некоторых признаков по материнской линии. Онтогенетическая предетерминация. Обусловлена изменениями в цитоплазме, возникающими в ней под влиянием определенных внешних факторов. Обычно такие изменения нестойки, например, воздействие повышенной температурой на яйца самок наездника до оплодотворения приводит к изменению окраски тела у их потомства. Генотипическая предетерминация цитоплазмы происходит под влиянием генотипа материнского организма. Яркий пример – наследование направления завитка раковины у пресноводных гермафродитных моллюсков Limnea. Большинство из них – перекрестно оплодотворяющиеся формы, но некоторые из них способны к самооплодотворению. У этих моллюсков встречаются два типа закручивания раковины: против часовой стрелки (левозакрученные) и по ходу часовой стрелки (правозакрученные). При этом типе наследования фенотип потомков соответствует генотипу матери, а не генотипу зигот, из которых они развиваются. Данный признак предопределяется генотипом материнского организма в цитоплазме яйца в процессе его развития. В данном случае свойства цитоплазмы детерминированы действием хромосомных генов, а не элементами самой цитоплазмы, то есть здесь действует механизм хромосомного наследования, который изменяет цитоплазму яйцеклетки еще до оплодотворения. Реципрокное скрещивание, система из двух скрещиваний — прямого и обратного. При Р. с. каждый из генотипически различных родительских типов А и В используется дважды — один раз в качестве материнской и другой раз в качестве отцовской форм (♀А ´♂В и ♀В ´♂А). Различия между реципрокными гибридами могут быть вызваны влиянием материнского организма, цитоплазматической наследственности, сцепленными с полом генами. Метод возвратного скрещивания состоит в получении потомства в ряду поколений от скрещивания гетерозиготы (детей гомозиготных родителей, генетически отличающихся друг от друга) с одним из исходных гомозиготных родителей. Смысл подобного скрещивания - замена гена (генов какого-либо комплекса) одной инбредной линии на гаплотип другой. В результате получается конгенная линия, отличающаяся от исходной только по этому гену (генам этого комплекса). Поглотительное скрещивание, преобразовательное скрещивание, один из видов скрещивания, применяемый для коренного улучшения малопродуктивных пород высокопродуктивными. Простое П. с. заключается в спаривании животных двух пород (улучшаемой и улучшающей) для получения помесей, которых затем в ряде поколений спаривают с производителями улучшающей породы до получения животных желательного типа. Высокопродуктивных помесей 4—5—6-го поколений (высококровных), отвечающих типу улучшающей породы, разводят «в себе» (см. Разведение «в себе»), что иногда заканчивается созданием новой породы. П. с., в котором участвуют несколько улучшающих пород, называемых сложным. П. с. — наиболее быстрый и эффективный способ массового улучшения малопродуктивного скота, а также преобразования пород с.-х. животных (например, грубошёрстных пород овец в тонкорунных и полутонкорунных). Скорость преобразования и улучшения пород зависит от степени наследственных различий между животными скрещиваемых пород, степени наследственной устойчивости (консолидации) пород, тщательности отбора и подбора среди помесей, а также условий кормления и содержания помесного молодняка.

Методы трансплантации ядер В нашей стране Б.В. Конюховым и Е.С. Платоновым в 1985 г. был разработан метод менее травматического переноса ядер методом микроманипуляции. Он протекает в два этапа: сначала тонкой микропипеткой прокалывают зоны пеллюцида и плазматической мембраны и извлекают пронуклеусы, а затем другой пипеткой, большего диаметра (12 мкм) в то же отверстие вводят диплоидное ядро донора. В этом случае меньше травмируется цитоплазма зиготы и транспортируемое ядро донора. Трансплантация ядер может осуществляться и другим способом, с использованием цитохалазинов (веществ, синтезируемых грибами). Цитохалазин В разрушает структуру микрофиламентов и способствует уникальному расположению ядра. Ядро остается соединенным с клеткой тоненьким стебельком цитоплазмы. При центрифугировании этот мостик разрывается, образуются безъядерные клетки (цитопласты) и кариопласты, представляющие собой ядра, окруженные тонким слоем цитоплазмы и цитоплазматической мембраной. Цитопласты отделяют от интактных клеток в градиенте плотности. Они сохраняют способность прикрепляться к поверхности культурального сосуда и могут быть использованы для слияния с кариопластами других клеток с целью получения жизнеспособной клетки. Биохимические методы направлены на выявление биохимического фенотипа организма. Биохимические показатели (первичный белковый продукт гена, накопление патологических метаболитов внутри клетки) отражают сущность болезни более адекватно, чем клинические симптомы. С помощью биохимических методов описано более 1000 врожденных болезней обмена веществ. К закономерностям цитоплазматического наследования следует отнести: 1) передачу признаков по материнской линии; 2) отсутствие строгих количественных закономерностей расщепления. Принципами цитоплазматической наследственности являются: 1) дискретная детерминация признаков; 2) относительное постоянство плазмогенов; 3) множественность идентичных плазмогенов. Итак, понятие наследования и наследственности следует различать, по надо помнить, что в конечном итоге материальная и функциональная преемственность между поколениями обеспечивается всем и самовоспроизводящимися структурами клетки: ядерными и цитоплазматическими.

 

Материнский эффект цитоплазмы. Наследование завитка у моллюсков. Пластидная наследственность. Наследование пестролистности у растений.

 

Наследование устойчивости к антибиотикам у хламидомонады. Митохондриальная наследственность. Наследование дыхательной недостаточности у дрожжей и нейроспоры.

Хламидомонада содержит одно ядро (обычно гаплоидное), один хлоропласт и 20 митохондрий. Это облигатный аэробный организм, растет на свету, используя СО2 в качестве источника С. Кроме того, он способен к гетеротрофному росту в темноте за счет ацетата натрия как источника углерода и к миксотрофному с использованием и ацетата натрия, и СО2 на свету. Жизненный цикл хламидомонады включает бесполую фазу с рядом митозов и половую, когда две морфологически идентичные особи (гаметы) противоположных типов (mt+ и mt-) объединяются, при этом сливаются два гаплоидных ядра и два хлоропласта. После образования зиготы обычно сразу происходит мейоз, а следовательно, и расщепление ядерных генов в отношении 1 : 1. Наиб. изуч. мут., характеризующие разл. степень устойчивости к антибиотикам (стрептомицину и эритромицину). Эти мутации или наследуются строго по материнской линии, или проявляют неменделевское расщепление. Кроме того, у этой водоросли могут быть многочисленные ядерные мутации-àнеспособность к фототрофному росту из-за нарушений отдельных звеньев фотосинтеза, но возм-ть миксотрофного и гетеротрофного роста. + пластидныуе мут. Пр-р: результаты скрещивания двух рас, одна из которых устойчива к стрептомицину (SГ), а другая чувствительна к нему (SS). При реципрокных скрещиваниях устойчивость или чувствительность потомков к стрептомицину опред. искл. тем, к какому половому типу (mt+ и mt-) принадлежит клетка расы SS или SГ. Свойство передается только по материнской линии, т. е. от родителя (mt+). Подобное насл. обнаруж.более 100 пластидных генов хламидомонады. Передача признаков по материнской линии объясняется тем, что все пластидные гены, привносимые в зиготу отцовской клеткой (mt-), каким-то образом элиминируются и не попадают в образующиеся после мейоза четыре дочерние клетки. В ред. случаях (менее 1 %) зигота несет пластидные гены обоих родителей. В отличие от яд. гетерозигот их называют ц/п, или сокращенно цитогетами. При мейозе, происходящем у цитогет, пластидные гены не расщепляются, так что все клетки образующейся тетрады также являются цитогетами. В ходе дельнейших митотических делений, т. е. при бесполом размн. этих особей, постепенно выщепляются оба родительских пластидных гена и возникают клоны клеток, несущих либо SГ либо SS. Частоту появл. цитогет можно повысить до 50%, облучая жен. гаметы (mt+) УФ непосред-о перед копуляцией. При образовании цитогет все хлоропластные маркеры, вводимые в скрещивание, наследуются не по материнской линии, а от обоих родителей, т. е. mt+ и mt . В отличие от яд. генов, обнаруж. мейотическое расщепление в тетрадах (октадах) 2:2 (4:4), хлоропластные гены у цитогет расщепляются не в мейозе, а при каждом митотическом делении зооспор, пока не выйдут в гомозиготу. Расщепление происходит в результате обменов на стадии четырех нитей, т. е. в момент, когда молекулы хлоропластной ДНК уже удвоены, но еще не разошлись в доч. кл. При этом наблюдаются реципрокная рекомбинация, как при митотическом кроссинговере на участке ген — центромера, и конверсия. Роль центромеры при этом играет точка прикрепления хлоропластной ДНК к мембране, управляющая расхождением нитей ДНК при делении пластиды. Картирование генов у цитогет ведется тремя способами: 1) по частоте реципрокных обменов на участке ген — точка прикрепления (она рассматривается как центромера); 2) по частоте реципрокных обменов на участках между генами; 3) по частоте коконверсии генов. Карта, построенная таким образом, имеет кольцевую форму. Первые сведения о приз., контр-х митохондриями, были получены у дрожжей Saccharomyces cerevistae в конце 40-х годов в лаборатории Б. Эфрусси. У этих гр. известны мутантные формы, образующие на глюкозе мелкие колонии- Petite-мутанты, фенотип которых обозначают Pet. Мутанты Pet не растут на неферментируемых источниках углерода, поскольку не способны к дыханию. Скрещивая гаплоидные клетки Pet- Х Реt+, можно получить гибриды дикого типа, способные к дыханию. Тетрадный анализ таких гибридов показывает, что признак Pet — от независимо полученных мутантов наследуется по-разному. Одни гибриды показывают нормальное расщепление (2Pet+:2Pet-), а другие не обнаруживают расщепления в тетрадах (4Pet+:0Pet-). Очевидно, в первом случае неспособность к дых. опр-ся хромосомной мутацией, а во втором — нехромосомной, по-видимому, ц/п. Эти два типа мутантов Pet- были названы соответственно генеративными и вегетативными. Вегетативные Pet — -мутанты возникают спонтанно. Иногда они составляют до 1% культуры. Их появление стимулируют высокая температура, бромистый этидий в одинаковой степени у гаплоидов и диплоидов. При пересевах эти мутанты никогда не ревертируют к фенотипу Pet+ в отличие от генеративных Pet-. Указанные воздействия не индуцируют генеративных мутантов Pet . Все это заставило предположить, что вегетативные Pet – рез-т потери детерминанта, наход-ся в ц/п-митохондрии. Сравнение мтДНК из штаммов дикого типа и из вегетативных мутантов Pet— показало, что последние несут делеции мтДНК различной протяженности вплоть до полной ее утраты. В даль-м в качестве генотипического символа обозначение pet сохранили только для рецессивных аллелей ядерных генов, которых теперь известно более 20. Позже мтДНК дрожжей была маркирована мутациями устойчивости к ряду антибиотиков (эритромицин, хлорамфеникол), подавляющих синтез белка у бактерий, а также устойчивости к агентам, подавляющим дыхание (олигомицин).

 

Взаимодействие ядерных и внеядерных генов. Цитоплазматическая мужская стерильность у растений. Инфекционные факторы внеядерной наследственности. Наследование каппа-частиц у парамеции при разных способах размножения (при нормальной продленной конъюгации, при аутогамии).

Один из самых ярких примеров цитоплазматического наследования — явление цитоплазматической мужской стерильности (ЦMC), обнаруженное у многих растений — кукурузы, лука, свеклы, льна и др. Цитоплазматическая мужская стерильность у кукурузы была открыта в 30-х годах одновременно в СССР М. И. Хаджиновым и в США М. Родсом. Кукуруза — однодомное растение, женские, цветки у нее собраны в початок, мужские — в метелку. У некоторых сортов кукурузы были, обнаружены растения, имевшие в метелках недоразвитые пыльники, часто совершенно пустые, а иногда с недоразвитой стерильной пыльцой. Оказалось, что этот признак определяется особенностями цитоплазмы. Опыление растений с мужской стерильностью нормальной пыльцой с других растений в большинстве случаев дает в потомстве растения со стерильной пыльцой. При повторении этого скрещивания в течение ряда поколений признак мужской стерильности не исчезает, передаваясь по материнской линии. Даже тогда, когда все 10 пар хромосом растений со стерильной пыльцой замещаются хромосомами от растений с фертильной пыльцой, мужская стерильность сохраняется. Это послужило убедительным доказательством того, что наследование данного признака осуществляется через цитоплазму. Цитоплазма, обусловливающая стерильность пыльцы, была обозначена символом цитS (стерильна цитоплазма), а цитоплазма растений с фертильной пыльцой символом цитN (нормальная цитоплазма). Установлено, что генотип растения может оказывать определенное влияние на действие стерильной цитоплазмы. Цитоплазма цитS может обусловить стерильность пыльцы только при наличии в генотипе растения рецессивного гена rf в гомозиготном состоянии Rf. Если же этот ген представлен доминантной аллелью Rf то растение цитS RfRf или цитS Rfrf имеет нормальную пыльцу. Следовательно, фертильную пыльцу могут иметь растения и цитNrfrf и цитNRf-, и цитSRf-, а полностью стерильную – только растения цитSrfrf. Многократное повторение скрещивания ♀ цитSrfrf Х ♂ цитNrfrf всегда дает потомство с полностью стерильной пыльцой. И только в скрещиваниях ♀ цитSrfrf Х ♂ цитSrfrf или цитNrfrf может быть получено потомство, где все растения будут иметь нормальную пыльцу, несмотря на наличие цитоплазмы цитS. Аллель Rf является, таким образом, восстановителем фертильности пыльцы. Следует еще раз подчеркнуть, что ген Rf не изменяет структуру и специфичность цитоплазмы цитS, а лишь тормозит проявление ее действия. Через цитоплазму могут передаваться различные симбионты клетки, которые обладают свойством саморепродуцироваться и в силу этого способны имитировать цитоплазматическое наследование. Наследование через инфекцию. У мышей имеется линия с наследственной предрасположенностью к развитию рака молочной железы, которая передается по материнской линии и только при выкармливании потомства. Если к матерям-кормилицам из раковых линий подсадить мышат из нераковой линии, то такие мышата также становятся предрасположенными к раку молочной железы. Если мышат из раковой линии с момента рождения, вскармливают нормальные кормилицы, то мышата остаются здоровыми. Таким образом, опухоли в данном случае вызываются инфекцией через молоко матери. Этот инфекционный агент был назван фактором молока. Установлено, что он имеет вирусную природу. Наследование через эндосимбионтов. У инфузорий Раrаmecium аureliа известны линии, которые содержат в цитоплазме и выделяют в среду специфические частицы, называемые каппа-частицами. Сами носители каппа-частиц («убийцы») от них не страдают, но парамеции из других линий (чувствительные) под их действием погибают. Недавно было показано, что каппа-частицы представляют собой бактерии (Caudobacter taeniospirafis), являющиеся по отношению к парамеции эндосимбионтам. Они содержат своеобразную белковую ленту, на которой находятся фаги - симбионты бактерий. Таким образом, здесь имеет место, своеобразный тройной симбиоз: инфузория — бактерия — фаг. При попадании каппа-частиц в пищеварительную вакуоль чувствительной инфузории белковая лента бактерии разворачивается. В результате жизнедеятельности вырабатываются вещества белковой природы, являющиеся, по-видимому, причиной гибели инфузорий. Сохранение каппа-частиц в цитоплазме и выделение их инфузорией-«убийцей» контролируется доминантным геном К; его рецессивная аллель k не способствует их сохранению. При прямом делении инфузории-«убийцы» постоянно дают однотипный К клон со свойствами «убийц». При соответствующих условиях удается произвести скрещивание, т.е. вызвать конъюгацию двух клеток — «убийцы» и чувствительной клетки.

Плазмидное наследование. Свойства плазмид: трансмиссивность, несовместимость, детерминирование признаков устойчивости к антибиотикам и другим лекарственным препаратам, образование колицинов и др. Использование плазмид в генетических исследованиях.

Плазмиды — дополнительные факторы наследственности, расположенные в клетках вне хромосом и представляющие собой кольцевые (замкнутые) или линейные молекулы ДНК. Плазмиды способны реплицироваться автономно, но при этом они эксплуатируют репликационную систему клетки хозяина. Большинство плазмид имеет специальные белки – инициаторы репликации. Эти белки начинают процесс репликации, который затем подхватывается и продолжается репликационной системой клетки. фактор фертильности (F). При конъюгации бактерии генетический материал от клетки-донора передается клетке реципиенту. Клетки-доноры называют мужскими (F+). Эти клетки имеют эписому (F+). Женские клетки лишены эписомы (F-). Эта кольцевая структура имеет длину 94,5 т.п.н. и содержит ряд генов: а) tra (transfer) – гены, необходимые для переноса ДНК из бактерии донора а бактерию – реципиент, б) гены, необходимые для репликации, в) четыре IS – элемента: две копии IS3, одну копию IS2 и один элемент – γδ. Некоторые плазмиды не способны включаться в бактериальную хромосому и соответственно не могут передаваться от клетки к клетке при конъюгации. Их называют нетрансмиссибельными, и если ген оказался в такой плазмиде, он не может легко передаваться. Примером может служить плазмида R, имеющая гены, которые определяют устойчивость клеток бактерий к антибиотикам. Плазмида R имеет те же tra – гены, гены, необходимые для репликации ДНК, две копии IS1 и трм гена резистентности к антибиотикам – amp (ампициллин), kan (канамицин) и tet (тетрациклин). Col-плазмиды обеспечивают устойчивость бактериальных клеток к действию сульфаниламидным препаратам, в. (колициногенных факторах) локализованы гены синтеза колицинов (бактериоцинов) – токсичных белков, к-рые не действуют на производящую их клетку, но убивают др. бактерии. Вне зависимости от типа, все плазмиды содержат точку инициации репликации. Плазмиды широко используются в генной инженерии для переноса генетической информации и генетических манипуляций. Для этого создаются искусственные плазмиды — векторы, состоящие из частей, взятых из разных генетических источников, а также из искусственно созданных фрагментов ДНК. Присутствие плазмид в клетках может быть объяснено преимуществами, которые дают плазмидные гены клетке-хозяину (возможность расти в присутствии антибиотика, использование более широкого круга субстратов, защита от бактериофагов, устранение конкурентов путем синтеза бактериоцинов) или же теорией эгоистичной ДНК, как в случае криптических плазмид (т. е. плазмида поддерживается благодаря своей приспособленности к условиям внутри клетки).

 

Понятие о наследственной и ненаследственной (модификационной) изменчивости. Формирование признаков как результат взаимодействия генотипа и факторов среды. Норма реакции генотипа. Адаптивный хар-ер модификаций.

Генотипическая (наследственная) изменчивость – изменчивость, обусловленная возникновением мутаций и ихкомбинаций при скрещивании. Мутации – это изменение свойств и признаков организма из-за изменениий гена или других элементов генетического аппарата клетки. Мутации возникают скачкообразно в отдельных половых клетках и сохраняются в поколениях. Примером может служить появление в потомстве гомозиготных белых кроликов черного, у остистой пшеницы безостых форм, у зеленой водоросли хлореллы салатных и т. д. Фенотипическая изменчивость – изменения морфологических, физиологических, биохимических и других особенностей организма во время роста и развития. Время и порядок появления этих изменений в онтогенезе строго определяются генотипом. Такую изменчивость называют возрастной или онтогенетической. Примеры - физическое и умственное развитие человека. Онтогенетическая изменчивость отличается отгенотипической тем, что организмы, несмотря на их возрастные различия, сохраняют одинаковый генотип. Разнообразие в проявлении одинаковых генотипов в различных условиях среды называют модификационной изменчивостью. Для модификаций характерны следующие признаки: 1. ненаследственный характер модификаций, они не передаются по наследству. 2. степень выраженности модификации прямо пропорциональна силе и продолжительности воздействия на организм фактора, вызывающего модификацию. 3. в большинстве случаев модификация представляет собой приспособительную реакцию организма на какой-либо фактор и т.д. Границы модификационной изменчивости, которые определяются генотипом, называются нормой реакции. Нормой реакции называют генотипически обусловленную способность организма варьировать степень выраженности признака в определенных пределах в зависимости от условий внешней среды.

 

Комбинативная изменчивость, механизм ее возникновения, роль в эволюции и селекции. Геномные изменения: полиплоидия, анеуплоидия.

 

Автополиплоиды, особенности мейоза и характер наследования. Аллополиплоиды. Амфидиплоидия как механизм возникновения плодовитых аллополиплоидов. Роль полиплоидии в эволюции и селекции.

Автополиплоидия – кратное увеличение в клетках организма исходного, характерного для вида набора хромосом. А. имеет значение в онтогенезе растений и животных, а также в филогенезе, главным образом у растений; у животных же — при партеногенезе. Вызывая А. искусственно (высокой температурой, излучениями, химическими соединениями), удалось получить автополиплоидные формы и сорта гречихи, ржи, сахарной свёклы и др. Автополиплоиды у человека и других высших позвоночных погибают на ранних стадиях внутриутробного развития. Существуют сбалансированные и несбалансированные автополиплоиды. Сбалансированными полиплоидами называются полиплоиды с чётным числом хромосомных наборов, а несбалансированными – полиплоиды с нечетным числом хромосомных наборов. Положительные эффекты полиплоидии связаны с увеличением числа копий одного и того же гена в клетках, и, соответственно, в увеличении дозы (концентрации) ферментов. Однако в ряде случаев полиплоидия приводит к угнетению физиологических процессов, особенно при очень высоких уровнях плоидности. Например, 84-хромосомная пшеница менее продуктивна, чем 42-хромосомная. Аллополиплоидия – соединение в клетках организма наборов хромосом от разных видов или родов. Т. о., А. — сочетание полиплоидии с гибридизацией. Различают аллодиплоиды (совмещающие два генома от разных видов), аллотетраплоиды (амфидиплоиды), сесквиполиплоиды (с полуторным набором хромосом) и др. А. имеет значение в процессах видообразования. Под гибридным видообразованием мы понимаем возникновение в потомстве от естественного гибрида новой линии, размножающейся в чистоте и изолированной от родительских видов и от своих сибсов в гибридной популяции. Эта новая линия должна преодолеть такие препятствия, как гибридная стерильность, и разрушение гибридов. Аллополиплоидия выполняет эту задачу. Амфидиплоиды – аллотетраплоиды, гибридные организмы, в клетках которых сочетаются полные диплоидные наборы хромосом двух разных видов. А. — частный случай аллополиплоидии. Имеют значение в видообразовании, используются в ресинтезе (воссоздании) старых видов (например, экспериментально в результате скрещивания терна Prunus spinosa с алычой P. divaricata получена культурная слива P. domestica) и в создании новых форм и даже видов растений. Получены, например, А. между рожью и пшеницей — тритикале, пшеницей и пыреем — пшенично-пырейные гибриды, капустой и редькой — рафанобрассика; среди животных известны А. у шелкопрядов. Полиплоидия имела огромное значение в эволюции дикорастущих и культурных растений (полагают, что около трети всех видов растений возникли за счёт П., хотя в некоторых группах, например у хвойных, грибов, это явление наблюдается редко), а также некоторых (преимущественно партеногенетических) групп животных. Доказательством роли П. в эволюции служат т. н. полиплоидные ряды, когда виды одного рода или семейства образуют эуплоидный ряд с увеличением числа хромосом, кратным основному гаплоидному (например, пшеница Triticum monococcum имеет 2n = 14 хромосом, Tr. turgidum и др. — 4n = 28, Tr. aestivum и др. —6n = 42). Полиплоидный ряд видов рода паслён (Solanum) представлен рядом форм с 12, 24, 36, 48, 60, 72 хромосомами. Среди партеногенетически размножающихся животных полиплоидные виды не менее часты, чем среди апомиктических растений (см. Апомиксис, Партеногенез). Советскому учёному Б. Л. Астаурову впервые удалось искусственно получить плодовитую полиплоидную форму (тетраплоид) из гибридов двух видов шелкопряда: Bombyx mori и В. mandarina. На основании этих работ им предложена гипотеза непрямого (через партеногенез и гибридизацию) происхождения раздельнополых полиплоидных видов животных в природе.

 

Анеуплоидия: нуллисомики, моносомики, нолисомики их использование в генетическом анализе. Особенности мейоза и образования гамет у анеуплоидов, их жизнеспособность и плодовитось.

Анеуплоидия — некратное гаплоидному уменьшение или увеличение числа хромосом (2n+1, 2n+2, и т. д.).Анеуплоидия приводит к изменению характера наследования признаков и вызывает определенное изменен в фенотипе. а) нулисомия - отсутствие пары хромосом (летальная мутация). б) моносомия - в наборе одна из пары гомологичных хромосом, например,при синдроме Шерешевского-Тернера (моносомия Х). Моносомии по первым крупным парам хромосом являются для человека летальными мутациями; в) трисомия - три гомологичных хромосомы в кариотипе. Так, например, у человека описана трисомия по всем хромосомам набора. Иногда трисомия бывает полной, т.е. .повторены три хромосомы одного номера, а иногда — частично когда повторены двеполные, а третья хромосома — частично. Фенотипически трисомия по каждой хромосоме характеризуется определенным набором симптомов, но всегда это бывают нарушения психомоторного развития с совокупностью множественных пороков. Анеуплоиды описаны у пшеницы, кукурузы, табака, хлопчатника, мыши, кошки, крупного рогатого скота и у многих других. Как правило, они менее жизнеспособны, имеют меньшую продолжительность жизни, менее плодовиты, чем диплоиды, и часть отличаются от последних морфологическими признаками. Известно, что анеуплоидия у растений менее сказывается на жизнеспособности, чем у животных. У анеуплоидов образуются как нормальные, гаплоидные гаметы, так и анеуплоиды. При этом у растений в оплодотворении приним. участие только пыльца с нормальным, гаплоидным набором хромосом, а зародышевые мешки функционируют независимо от числа хромосом, поэтому характер расщипления в потомстве анеуплоидов резко отличается от расщипления у диплоидов. В настоящее время исследование анеуплоидии у растений приобретает важное значение в связи с выяснением роли каждой хромосомы в генотипе. В будущем это поможет экспериментальному синтезу определенных генотипов. Анеуплоидия играет огромную роль в эволюции генотипа и имеет большое значение для изучения происхождения культурных растений.

 

Внутри- и межхромосомные перестройки: делеции, дупликации, инверсии, транслокации, транспозиции. Механизмы их возникновения, использование в генетическом анализе для локализации отдельных генов и составления генетических карт.

Хромосомные мутации характер-я изменениями положения участков, размеров и организациями хромосом. В такие перестройки могут быть вовлечены участки одной хромосомы или разных, негомологичных. Хромосомные перестройки возникают в результате образовавшихся при мутагенном воздействии разрывов хромосом, последующей утраты некоторых фрагментов и воссоединения частей хромосомы в ином порядке по сравнению с нормальной хромосомой. Используют в диагностике наследственных заболеваний. Среди внутрихромосомных перестроек выделяют: дупликации – удвоение, один из участков хромосомы представлен более одного раза; делеции – или нехватка, утрачен внутренний участок хромосомы, теломера не затронута; инверсии – повороты участка хромосомы на 180. Инвертированный участок может вкл или не вкл центромеру. Из 4 хромосом образовавшихся в процессе мейоза, в случае парацентрической инверсии у 1 хромосомы отсутствует центромера, др хромосома содержит 2 центромеры, 2 хромосомы отсаются нормальными – их кроссинговер не затронул. В случае перецентрической инверсии 2 хромосомы также остаются незатронутыми, в 3-й – некоторые гены утрачены., в 4-й – дуплицированны. Гетерозиготные по инверсиям организмы часто бывают стерильными, т к часть образующихся гамет не способна к образованию жизнеспособных зигот. Межхромосомные перестройки – транслокации, при кот участок хромосомы перемещается на другое место негомологичной хромосомы, попадая при этом в другую группу сцепления. Выделяют несколько типов транслокаций: реципрокные – взаимный обмен участками негомологичных хромосом; нереципрокные – участок хромосомы изменяет свое положение или включается в др хромосому без взаимного обмена; децентрические – слияние 2 и более фрагментов негомологичных хромосом, несущих участки с центромерами; центричекие – происходят при слиянии 2 центромеров негомологичных акроцентрических хромосом, с образование 1 мета- или субметацентрической хромосомы. Механизм возникновения хромосомных перестроек остается еще далеко не ясным. Частота хромосомных перестроек зависит от внешних агентов (ионизирующих излучений, химических веществ) и физиологического состояния организма. Образование всякой хромосомной перестройки происходит благодаря разрыву и соединению фрагментов. Если акроцентрическая хромосома случайно образовала петлю и в точке контакта произошел разрыв, то соединение может идти тремя путями: с сохранением нормальной структуры хромосомы, с образованием хромосомы с делецией и ацентрического кольца, которое элиминируется, и с возникновением инверсии. Таким же образом и в метацентрической хромосоме может либо восстанавливаться нормальная структура, либо возникать хромосомная аберрация. Разрыв и обмен могут осуществляться в момент, когда хромосома представлена функционально единичной нитью (ранняя интерфаза) или двумя хроматидами (поздняя интерфаза и профаза 1). Перестройки, происшедшие на стадии единичной нити, называют иногда хромосомными перестройками, а на стадии двух хроматид - хроматидными перестройками. Изучение хромосомных перестроек дало генетикам метод исследования генотипа как системы. Хотя хромосомы наследственно дискретны, т. е. различные их локусы определяют развитие разных признаков и свойств организма, но все же каждая хромосома представляет целостную систему взаимодействующих генов, сложившуюся в процессе эволюции.

Классификация генных мутаций. Общая характеристика молекулярной природы возникновения генных мутаций: замена оснований, выпадение или вставка оснований (нонсенс, миссенс и фрэймшифт типа).

Генные (точковые) мутации затрагивают, как правило, один или несколько нуклеотидов, при этом один нуклеотид может превратиться в другой, может выпасть(делеция), продублироваться, а группа нуклеотидов может развернутся на 180 градусов. Классификация мутаций. 1. По причинам, вызвавшим мутации их подразделяют на: а) спонтанные (самопроизвольные) мутации происходят под действием естественных мутагенных факторов внешней среды без вмешательства человека. в) индуцированные мутации - результат направленного воздействия определенных мутагенных факторов. Так, впервые в 1925 году Г. А. Надсон и Г. С. Филиппов получили мутации у дрожжей под действием ионизирующей радиации. 2. По мутировавшим клеткам мутации подразделяются на: а) генеративные, которые происходят в половых клетках, передаются по наследству при половом размножении. б) соматические, происходящие в соматических клетках, проявляются у самой особи и передаются по наследству только при вегетативном размножении. 3. По исходу для организма мутации бывают: отрицательные - летальные (несовместимые с жизнью); полулетальные - снижающие жизнеспособность организма; нейтральные - не влияющие на процессы жизнедеятельности); положительные - повышающие жизнеспособность). Последние возникают редко, но имеют большое значение для прогрессивной эволюции. Генные (точковые) мутации, или трансгенации, связаны с изменениями структуры гена (молекулы ДНК). Генные мутации подразделяются на: изменения структурных генов; изменения функциональных генов. Изменения структурных генов. «Сдвиг рамки считывания» - вставка или выпадение пары или нескольких пар нуклеотидов. Например, исходный порядок нуклеотидов: АГГАЦТЦГА, а после вставки нуклеотида: ААГГАЦТЦГА...; в зависимости от места вставки или выпадения нуклеотидов изменяется меньшее или большее число кодонов.

Транзиция - замена оснований пуринового на пуриновое, или пиримидинового на пиримидиновое, например: А → Г, Ц → Т; при этом изменяется тот кодон, в котором произошла транзиция. Трансверзия - замена пуринового основания на пиримидиновое или пиримидинового на пуриновое. Например: А → Ц, Г → Т; изменяется тот кодон, в котором произошла трансверзия. 1. Missense-мутация. К этому типу принадлежит мутация, описанная в предыдущем разделе. В одном из триплетов происходит замена одного основания (например, ЦТТ→ГТТ), в результате чего измененный триплет кодирует аминокислоту, отличную от той, которую кодировал прежний триплет. 2. Мутация со сдвигом рамки. Если в последовательность ДНК включается новое основание или пара оснований, то все лежащие за ними триплеты изменяются, что влечет за собой изменение синтезируемого полипептида. Возьмем, например, последовательность АТТ—ТАГ—ЦГА, перед которой включилось основание Т. В результате получится новая последовательность ТАТ—ТТА—ГЦГ—А… К такому же результату приведёт утрата одного из имеющихся оснований. 3. Nonsense-мутация. В результате замены одного основания возникает новый триплет, представляющий собой терминирующий кодон. В генетическом коде имеется три таких триплета. При такой замене синтез полипептидной цепи прекращается в новой (т. е. другой) точке, и соответственно эта цепь отличается своим свойствам от полипептида, который синтез прежде. 4. Синонимическая missence-мутация. Генетический код обладает значительной избыточностью: два или несколько его триплетов кодируют одну и ту же аминокислоту. Поэтому можно ожидать, что в некоторых случаях при замене оснований один триплет заменяется другим — синонимическим, кодирующим ту же аминокислоту. В этом случае, вследствие избыточности кода мы имеем дело с молекулярным изменением в пределах данного гена, которое не вызывает фенотипического эффекта. Такие синонимические мутации, вероятно, довольно обычны.

40) Роль мобильных генетических элементов в возникновении генных мутаций и хромосомных перестроек. Мобильные генетические элементы (мобильные гены, прыгающие гены), дискретные фрагменты (сегменты) ДНК, способные встраиваться в разные участки генома; их расположение на хромосомах может меняться как в процессе историч. развития мира организмов, так и в пределах жизни одного индивидуума. Найдены практически во всех изученных организмах - от бактерий до человека. Они весьма разнятся по своему нуклеотидному составу и той роли, к-рую они играют в клетке. У прокариот (бактерии и синезеленые водоросли) выделено неск. осн. групп М.г. э.-IS- , Tn-элементы, эписомы, а также нек-рые бактериофаги, или фаги. IS-элементы-простые вставочные (инсерционные) последовательности (обозначаются - в зависимости от их нуклеотидного состава номерами IS1, IS2 и т.д.); содержат от 700 до 1500 пар нуклеотидов. Они встречаются в нек-рых плазмидах (внехромосомные носители наследственности) и умеренных фагах (способны существовать в клетке в форме профага). Транспозиции IS-элементов не сопряжены с их исключением из мест исходной локализации в плазмидах или хромосоме; при транспозиции IS-элемент удваивается и одна его копия остается на прежнем месте, а другая попадает в новый локус (местоположение гена в хромосоме или плазмиде). Таким образом транспозиции этого элемента сопряжены с репликацией (удвоением) его ДНК. Обычно IS-элементы встраиваются в разл. места бактериального генома, однако нек-рые участки оказываются более предпочтительными, чем другие. Встраивание и исключение этих элементов происходит с высокой точностью, что свидетельствует об участии в этих процессах ферментов, узнающих инвертир. концевые повторы IS-элементов. Ферментные системы, обусловливающие транспозиции IS-элементов, по крайней мере, частично кодируются их собств. ДНК. Значение IS-элементов для эволюции бактерий связано с тем, что эти элементы при своих перемещениях инактивируют разл. гены или нарушают их нормальную регуляцию. Помимо прямого влияния на экспрессию гена вследствие транспозиции инсерционной последовательности непосредственно в кодирующую часть гена или его регуляторную зону, эти М. г. э. могут влиять также на транскрипцию (биосинтез информационной РНК на матрице ДНК) окружающих их последовательностей ДНК генома. Это происходит вследствие того, что мн. IS-элементы содержат промоторные (инициирующие транскрипцию) и терминаторные (прекращающие транскрипцию) участки ДНК. Транспозиции IS-элементов могут вызывать слияние двух не связанных ранее генов или оперонов (совокупность связанных между собой генов и прилегающих к ним регуляторных участков) с образованием новых функцион. единиц, а также индуцировать все виды хромосомных перестроек. Соединение разнородных репликонов (элементарная генетич. структура, способная к самокопированию) имеет большое биол. значение, т. к. объединяет ранее разобщенные генетич. детерминанты, подчас принадлежащие разным видам организмов. Tn-элементы (сложные перемещающиеся элементы, или транспозоны) принципиально отличаются от IS-элементов только тем, что содержат дополнит. структурные гены, не имеющие отношения к ф-ции транспозиции. Известно много транспозонов, в состав к-рых входят гены устойчивости к антибиотикам, тяжелым металлам и др. ядам. При этом один и тот же транспозон иногда несет целый набор Детерминант резистентности. Такие транспозоны наиб. широко распространены, т.к. представляют ценность для селекции бактерий. Существуют транспозоны, содержащие гены, к-рые кодируют токсины, а также свойственные данному организму ферменты. Как правило, Tn-элементы несут на концах целые или частично измененные IS-элементы, к-рые сообщают им способность перемещаться по геному и вызывать в нем те же изменения, что и своб. IS-элементы. Транспозоны вместе с плазмидами и фагами (в к-рые они легко интегрируются) способны осуществлять обмен разл. заключенных в них генов между весьма отдаленными видами бактерий, поэтому они играют чрезвычайно важную роль в эволюции бактерий, включая адаптацию их к лек. в-вам и продуцирования ими новых токсинов. Транспозиция Tn-элементов осуществляется по такому же механизму, как и IS-элементов, и также включает стадию трансляции. Большинство транспозонов не выбирает для своего включения строго определенные последовательности в ДНК. Др. группу М.г. э. бактерий составляют эписомы-сложные плазмиды, способные к интеграции в хромосому. Эписомы, как правило, содержат IS- или Tn-элементы, и в большинстве случаев именно благодаря им они могут включаться в состав хромосомы. К М.г.э. прокариот относят также умеренные фаги. l-Фаги (лямбдоидные фаги) обычно встраиваются в одно место хромосомы, но при определенных условиях могут располагаться и в др. участках генома. Интеграция лямбдо-идных фагов обеспечивается ферментной системой, состоящей из клеточных белков и белков, кодируемых геномом фага. Фаги способны вносить существ. изменения в структуру и функционирование бактериального генома благодаря двум процессам - интеграции фаговой ДНК в хромосому бактерии и трансдукции (переносу фагом бактериальных генов из одних клеток в другие). М.г.э., что ускоряет микроэволюцию опухолевых клеток и способствует развитию опухолей. М. г. э. открыты в 40-х гг. 20 в. Б. Мак-Клинток на основании генетич. анализа нестабильных мутаций у кукурузы. Исследование их мол. природы начато в 60-х гг. в связи с обнаружением нового типа мутационных изменений у бактерий (т.наз. вставочных мутаций) и идентификацией носителей этих мутаций. Структурно-функцион. исследования М. г. э. эукариот на мол. уровне ведутся с кон. 70-х гг. с использованием методов клонирования (получение наследственно однородных поколений особи или клетки путем бесполого размножения) и генетич. инженерии.

Спонтанный и индуцированный мутационный процесс. Радиационный мутагенез: генетические эффекты ионизирующего излучения и УФ-лучей. Закономерности «доза эффект».

Мутация - это скачкообразное изменение генетического материала под влиянием факторов внешней или внутренней среды, передающееся по наследству. Процесс образования мутаций называется мутагенезом, а факторы, вызывающие мутации, — мутагенами. Мутагены первоначально воздействуют на генетический материал особи, вследствие чего может измениться фенотип. Мутагенные факторы подразделяют на: физические; химические; биологические. К физическим мутагенным факторам относятся различные виды излучений, температура, влажность и др. К химическим мутагенам относятся: а) природные органические и неорганические вещества (нитриты, нитраты, алкалоиды, гормоны, ферменты и др.); б) продукты промышленной переработки природных соединений угля, нефти; в) синтетические вещества, ранее не встречавшиеся в природе (пестициды, инсектициды, пищевые консерванты, лекарственные вещества); г) некоторые метаболиты организма человека. Химические мутагены обладают большой проникающей способностью, вызывают преимущественно генные мутации и действуют в период репликации ДНК. К биологическим мутагенам относятся: а) вирусы (краснухи, кори, гриппа), б) невирусные паразитарные агенты (микоплазмы, бактерии, риккетсии, простейшие, гельминты). Спонтанная мутационная изменчивость – мутации, которые возникают в естественных условиях без специального воздействия какими-либо агентами. Мутационный процесс характеризуется главным образом частотой возникновения мутаций. Для спонтанного мутирования характерны следующие закономерности: различные гены в одном генотипе мутируют с разной частотой (есть гены мутабильные и стабильные); сходные гены в разных генотипах мутируют с разной частотой. На частоту мутаций оказывают влияние многие факторы, например: наличие особых генов-мутаторов; физиологическое состояние и биохимические изменения в клетках (при хранении семян в течение нескольких лет частота мутаций, особенно типа хромосомных перестроек, значительно увеличивается). Накопление в генотипе мутаций, блокирующих синтез тех или иных веществ, вследствие чего происходит накопление предшественников таких веществ, которые могут обладать мутагенной активностью. Индуцированный мутационный процесс – возникновение наследственных изменений под влиянием специального воздействия факторов внешней и внутренней среды. Так, впервые в 1925 году Г. А. Надсон и Г. С. Филиппов получили мутации у дрожжей под действием ионизирующей радиации. Возникновение под влиянием ионизирующих излучений и ультрафиолетовых лучей наследственных изменений (мутаций). Под действием излучений возникают качественно те же мутации, что и без облучения, но значительно чаще; соотношение разных типов мутаций также может быть иным. Основные механизмы их действия: 1) нарушение структуры генов и хромосом; 2) образование свободных радикалов, которые вступают в химическое взаимодействие с ДНК; 3) разрывы нитей ахроматинового веретена деления; образование димеров. Используется в генетических исследованиях, в селекции промышленных микроорганизмов, сельскохозяйственных и декоративных растений. Повышение частоты вредных мутаций в результате увеличения содержания в биосфере радиоактивных изотопов - одна из основных опасностей радиоактивного загрязнения биосферы. Общая закономерность: с увеличением дозы - увеличивается степень повреждения системы; в процесс вовлекается все большее число составляющих её элементов. В зависимости от действующей дозы практически всякое вещество в определенных условиях может оказаться вредным для организма. На проявление зависимости "доза-эффект" оказывает существенное влияние внутри- и межвидовая изменчивость организмов. Действительно, особи, относящиеся к одному и тому же виду, существенно отличаются друг от друга по биохимическим, физиологическим, морфологическим характеристикам. Эти отличия в большинстве случаев обусловлены их генетическими особенностями. Еще более выражены, в силу тех же генетических особенностей, межвидовые различия. В этой связи дозы конкретного вещества, в которых оно вызывает повреждение организмов одного и того же и, тем более, разных видов, порой очень существенно различаются. Следовательно, зависимость "доза-эффект" отражает свойства не только токсиканта, но и организма, на который он действует. На практике это означает, что количественную оценку токсичности, основанную на изучении зависимости "доза-эффект", следует проводить в эксперименте на различных биологических объектах, и обязательно прибегать к статистическим методам обработки получаемых данных.

Химический мутагенез. Особенности мутагенного действия химических агентов. Факторы, модифицирующие мутационный процесс. Антимутагены. Мутагены окружающей среды и методы их тестирования.

Мутации - это наследуемые изменения генетической информации, хранящейся в ДНК клеток. Различные факторы химической и физической природы способны вызывать мутации. Наиболее изученными являются последствия действия ионизирующей радиации и таких веществ, как сернистый и азотистый иприты, эпоксиды, этиленимин, метилсульфонат и т.д. Химические вещества, способные вызывать мутации называются мутагенами. Методом введения большого числа точковых мутаций разной локализации в исследуемые части генов in vitro является химический мутагенез одноцепочечных участков рекомбинантных ДНК. Принцип метода заключается в том, что некоторые химические мутагены, такие как бисульфит натрия, гидроксиламин или метоксиламин, действуют только на одноцепочечные участки ДНК. Следовательно, получив молекулы ДНК, содержащие одноцепочечные бреши в исследуемых участках генов, можно с помощью бисульфита натрия дезаминировать остатки цитозина в этих участках, т.е. превратить их в остатки урацила. Химические соединения делятся на несколько групп:

1аналоги оснований по молекулярной структуре похожи на основания ДНК, приводят к мутациям потому, находясь в разных альтернативных состояниях, могут спариваться с нормальными основаниями. Н-р, 5-бромурацил в нормальном состоянии спаривается с аденином, а в редком таутомерном состоянии – с гуанином. В связи с этим возникает транзиция, когда 5-бромурацил включается в ДНК в нормальном состоянии, а при репликации ДНК превращается в таутомерную форму. 2агенты, модифицирующие основания – хим.соединения, изменяющие структуру и свойства основанй. К ним относятся дезаминирующие, алкилирующие, гидроксилиоующие соединения. Азотистая кислота (HNO2) – осуществляет окислительное дезаминирование, т.е. удаляет аминогруппы (-NH2) из таких оснований как гуанин, цитозин, аденин. Гуанин → ксантин, но, так как это пуриновое основание, то мутация не проявляется. После модификации цитозина получается урацил, в итоге происходит транзиция от C-G к Т-А в ходе репликации.также азотистая кислота модифицирует аденин в гипоксантин – основание спаривающееся с цитозином, а не с тимином,что продуцирует транзицию А-Т в G-C. Гидроксиламин (NH2OH) – специфично реагирует с цитозином, добавляя гидроксильную группу (-ОН), в результате чего он спаривается уже с аденином, а не гуанином. Индуцируется транзиция С-G в Т-А. 3интеркалирующие агенты – встраивают встраиваюи основания в одной или обеих цепях ДНК. Сюда относят: акридин, профлавин, этидиумбромид. Если интеркалирующий агент встраивается между основаниями в матричной цепи ДНК, дополнительное основание включается во вновь синтезируемую цепь и возникает мутация сдвига рамки. Методом введения большого числа точковых мутаций разной локализации в исследуемые части генов in vitro является химический мутагенез одноцепочечных участков рекомбинантных ДНК. Принцип метода заключается в том, что некоторые химические мутагены, такие как бисульфит натрия, гидроксиламин или метоксиламин, действуют только на одноцепочечные участки ДНК. Следовательно, получив молекулы ДНК, содержащие одноцепочечные бреши в исследуемых участках генов, можно с помощью бисульфита натрия дезаминировать остатки цитозина в этих участках, т.е. превратить их в остатки урацила. Химические соединения делятся на несколько групп: 1аналоги оснований по молекулярной структуре похожи на основания ДНК, приводят к мутациям потому, находясь в разных альтернативных состояниях, могут спариваться с нормальными основаниями. Н-р, 5-бромурацил в нормальном состоянии спаривается с аденином, а в редком таутомерном состоянии – с гуанином. В связи с этим возникает транзиция, когда 5-бромурацил включается в ДНК в нормальном состоянии, а при репликации ДНК превращается в таутомерную форму. Другой широко известный аналог основания – 2-аминопурин; 2агенты, модифицирующие основания – хим.соединения, изменяющие структуру и свойства основанй. К ним относятся дезаминирующие, алкилирующие, гидроксилиоующие соединения. Азотистая кислота (HNO2) – осуществляет окислительное дезаминирование, т.е. удаляет аминогруппы (-NH2) из таких оснований как гуанин, цитозин, аденин. Гуанин → ксантин, но, так как это пуриновое основание, то мутация не проявляется. После модификации цитозина получается урацил, в итоге происходит транзиция от C-G к Т-А в ходе репликации.также азотистая кислота модифицирует аденин в гипоксантин – основание спаривающееся с цитозином, а не с тимином,что продуцирует транзицию А-Т в G-C. Гидроксиламин (NH2OH) – специфично реагирует с цитозином, добавляя гидроксильную группу (-ОН), в результате чего он спаривается уже с аденином, а не гуанином. Индуцируется транзиция С-G в Т-А. Метиметансульфонат (ММС) – алкилирует гуанин, т.е. добавляет группы –СН или –СН2СН3 к кислороду в 6-ой позиции, в результате образуется О6-алкилгуанин или О6-метилгуанин, которые будут спариваться с тимином, а не с цитозином, давая транзицию G-C в А-Т; 3интеркалирующие агенты – встраивают встраиваюи основания в одной или обеих цепях ДНК. Сюда относят: акридин, профлавин, этидиумбромид. Если интеркалирующий агент встраивается между основаниями в матричной цепи ДНК, дополнительное основание включается во вновь синтезируемую цепь и возникает мутация сдвига рамки. Антимутагены (от анти... и мутагены), вещества, понижающие частоту мутаций, препятствующие мутагенному действию химических или физических агентов. А. условно можно разбить на 3 группы: 1) блокирующие действие автомутагенов, естественно возникающих в клетках в процессе метаболизма (антиавтомутагены), например фермент каталаза, который разрушает обладающую мутагенным действием перекись водорода. Эти А. обеспечивают сохранение определённого уровня спонтанных мутаций; 2) снижающие действие внешних, искусственных физических (ионизующей радиации и др.) или химических мутагенов. Такими А. являются сульфгидрильные соединения, сильные восстановители типа Na2S2O, некоторые спирты и углекислые соли. А. этих двух групп могут разрушать мутагены или конкурировать с важными в генетическом отношении структурами за взаимодействие с мутагеном, действовать как восстановители и т. д.; 3) ферментные системы, действующие непосредственно на уровне наследственных структур, т. е. «исправляющие» поврежденные мутагеном участки хромосомы. Мутационный эффект может быть также снят физическим воздействиями определённой интенсивности (светом, высокой и низкой температурой и др.). Действие мутагенов, рассеянных в окружающей среде, вызывает увеличение частоты возникновения мутаций, что ведет к росту так называемого генетического груза, выражающегося в увеличении наследственной патологии, а также частоты онкологических заболеваний. Мутагенные и канцерогенные свойства химических веществ тесно связаны между собой. Поэтому выявление возможных мутагенов в окружающей среде, испытание на мутагенность продуктов промышленного синтеза (красители, лекарственные средства, пестициды и др.) - важная задача современной генетики. Комплексные наборы биологических тест-систем для массового скрининга предназначены для выявления всех типов мутационных повреждений хромосом и .генов и должны быть чувствительны к малым дозам мутагенов. Ведь последствия суммарного и длительного воздействия низких доз мутагенов создают наибольший вклад в увеличение генетического груза: достаточные для индукции точковых мутаций, способных накапливаться в поколениях, они к тому же наиболее распространены в окружающей среде.

 

Представление школы Моргана о строении и функции гена. Функциональный и рекомбинационный критерии аллелизма. Множественный аллелизм.

 

Работы школы Серебровского по ступенчатому аллелизму. Псевдоаллелизм. Функциональный тест на аллелизм (цис-транс тест).

45. Исследование тонкой структуры гена на примере фага Т4 (Бензер). Ген как единица функции (цистрон). Явление межаллельной комплементации,… Классической работой, показавшей пределы мутационной и рекомбинационной… Взаимоотношения мутантов r II c различными штаммами E. сoli создают возможности для: выращивания только ревентантов и…

Молекулярно-генетические подходы в исследовании тонкого строения генов. Интрон-экзонная организация генов эукариот, сплайсинг.

Последовательности нуклеотидов в экзонах консервативны, а в интронах сильно варьируют. Иногда экзон одного гена может быть гомологичным экзону даже…  

Структурная организация генома эукариот. Классификация повторяющихся элементов генома. Семейства генов. Псевдогены. Регуляторные элементы генома. Молекулярно-генетические методы картирования генома.

Псевдогены – это копии нормальных генов, лишенные интронов, несущие различные мутации. Их существование подтверждает саму возможность сохранения дупликатных копий генетических единиц, которые могут служить материалом для возникновения новых генов. У дрозофилы псевдогены встречаются редко, чаще это гены транспортных или малых ядерных РНК (тАНК, snRNA). В геноме человека, как полагают, не менее 3 тыс. последовательностей можно рассматривать в качестве псевдогенов. Главной отличие генетического материала эукариот от прокариотами - наличие избыточной ДНК. Существуют виды, геном которых в десятки раз больше генома человека, например некоторые рыбы, хвостатые амфибии, лилейные растения. Избыточная ДНК характерна для всех эукариот. В конце 60-х гг. американские ученые Р. Бриттен и Э. Дэвидсон открыли фундаментальную особенность молекулярной структуры генома эукариот — наличие последовательностей нуклеотидов разной степени повторяемости. Это открытие было сделано с помощью молекулярно-биологического метода изучения кинетики ренатурации денатурированной ДНК. Различают следующие фракции в геноме эукариот: 1. Уникальные последовательности, т. е. представленные в одном экземпляре. 2. Промежуточные (или среднечастотные) повторы. Это последовательности, повторяющиеся десятки и сотни раз. 102-105 копий. 3. Высокочастотные повторы, число которых в геноме достигает 106 копий. Уникальные последовательности чаще всего представлены генами. Число генов у эукариот определяют одним из двух способов. Первый способ прямой, т. е. экспериментально определяют последовательности нуклеотидов во всем геноме, число последовательностей, содержащих длинные рамки считывания. Понятно, что такой анализ можно провести пока на очень ограниченном числе видов, главным образом тех, которые вовлечены в геномные проекты. Повторы образуют семейства — совокупность последовательностей, полностью или по большей части гомологичных друг другу. У эукариот не распространен оперонный тип расположения генов, т.е. объединение в блоки генов, находящихся под общим контролем. Гены, контролирующие даже последовательные биохимические реакции, расположены в разных районах хромосомы и даже в разных хромосомах. Например, у дрозофилы многие гены, кодирующие ферменты, под контролем которых происходит превращение триптофана в бурый глазной пигмент, разбросаны во множестве участков генома. Вместе с тем известны некоторые примеры кластерной организации генов. У человека существует несколько типов гемоглобинов. Каждый из них синтезируется на определенной стадии развития. Важное значение в картировании генов принадлежил молекулярно-генетическим подходам, которые явл-ся принципиально важным звеном для успешного совмещения карт сцепления и физических карт целых хромосом и их фрагментов. Точность цитогенетического картирования определдяется степенью спирализации хромосом, характером использованной метки и разрешающей способностью микроскопического оборудования. При картировании на стандартных метафазных хромосомах и использовании радиоактивно меченых зондов точность картирования ограничивается одним крупным диском или даже сегментом хромосомы. При использовании биотиновой метки на прометафазных хромосомах точность картирования возрастает.

 

Генетический контроль и молекулярные механизмы репликации. Полуконсервативный способ репликации ДНК. Полигенный контроль процесса репликации. Схема событий в вилке репликации. Понятие о репликоне. Системы рестрикции и модификации. Рестрикционные эндонуклеазы.

Для передачи дочерним клеткам генетической информации в процессе репликации ДНК должна быть создана копия генома. Репликация ДНК осуществляется ДНК-зависимыми ДНК-полимеразами. Эти ферменты используют в качестве шаблона одну из цепей двойной спирали ДНК, так называемую матрицу. На матрице, начиная с короткой стартовой последовательности (праймера), ферменты синтезируют комплементарную цепь и воспроизводят в итоге исходную двухтяжевую ДНК. Субстратами ДНК-полимераз являются четыре дезоксирибонуклеотидтрифосфата: аденозин-, гуанозин-, тимидин- и цитозинтрифосфаты. При каждом шаге синтеза ДНК происходит спаривание нуклеотида с соответствующим азотистым основанием матричной цепи. Затем α-фосфатная группа связанного нуклеотида подвергается нуклеофильной атаке со стороны 3'-ОН-группы предыдущего нуклеотида. За этим следует удаление дифосфата и образование новой фосфодиэфирной связи. Эти этапы повторяются снова и снова по мере движения ДНК-полимеразы от одного основания к следующему вдоль матрицы. В соответствии с этим механизмом матричная цепь ДНК считывается в направлении 3'→5'. В большинстве клеток имеется несколько ДНК-полимераз. Наряду с ферментами, которые осуществляют собственно репликацию, существуют полимеразы, которые включены в процессы репарации ДНК (см. с. 252) или реплицируют митохондриальную ДНК эукариот. Большинство ДНК-полимераз построены из множества субъединиц, роль которых до конца не выяснена. Расплетание нитей молекулы ДНК происходит с помощью особого белка – геликазы. Оно идет против витков спирали и совершается с огромной скоростью. При расплетании возникает суперспирализация и вращение ДНК, которое снимается группой ферментов, называемых топоизомеразами. Топоизомераза I – вносит временный одноцепочечный разрыв перед репликативной вилкой, что позволяет спирали ДНК вращаться вокруг своей оси. После снятия напряжения разорванная цепь восстанавливается. Топоизомераза II – создает временный двуцепочечный разрыв, удерживая вместе оторванные друг от друга концы цепей. Присутствие этого фермента позволяет распутывать сложные переплетения и узлы. Затем на релаксированный участок родительской молекулы ДНК, с которого начинается репликация и который называется точной начала (или ориджином) репликации (ori C) садятся инициаторные белки. Синтез цепи ДНК всегда идет в направлении 5’→ 3’. Из-за того, что в родительской молекуле ДНК цепи антипараллельны, на одной из родительских цепей новая цепь синтезируется непрерывно в направлении 5’→ 3’, что совпадает с движением репликативной вилки. Это лидирующая (или ведущая) цепь. Другая растет за счет синтеза коротких фрагментов также от 5’к 3’, но они синтезируются в обратном направлении и носят название фрагментов Оказаки. На ДНК- матрице ДНК – праймаза синтезирует короткую РНК – затравку (праймер). Затем РНК – праймеры удлиняются действием ДНК – полимеразы III. На матрице отстающей цепи собираются SSB – белки, удерживая цепь в выпрямленном состоянии, затем синтезируются РНК – праймеры, которые удлиняются действием ДНК – полимеразы III, которая при этом вытесняет SSB – белки по мере синтеза нового фрагмента Оказаки. Фрагметны Оказаки сшиваются благодаря действию двух ферментов: ДНК–полимеразы I, продолжающей синтез в направлении 5’→ 3’, одновременно удаляя РНК – праймер, и ДНК – лигазы, достраивающей одноцепочечную брешь. Репликация осуществляются дискретно. Участок ДНК, в котором происходит индивидуальный акт репликации, называется репликоном. Репликон содержит все регуляторные элементы, необходимые для репликации: ориджин и может иметь терминатор. Геном прокариот составляет единственный репликон. Полигенный контроль реплиации. Б. Альбертс и А. Корнберг высказали в начале 70-х годов предположение о том, что редупликацию ДНК осуществляет комплекс белков - реплисома, аналогичный рибосоме. По-видимому, кроме ДНК-полимераз и уже перечисленных факторов в состав реплисомы, формирующейся в репликационной вилке, входят и другие белки, прямо или косвенно участвующие в синтезе ДНК. В реплисому, по-видимому, включаются продукты генов dnaB и dnaC, необходимые в течение всей редупликации. Продукт гена dnaB Е. coli оказался ферментом, катализирующим ДНК-зависимый гидролиз рибонуклеозидтрифосфатов до рибонуклеозиддифосфатов и фосфата. Эту активность примерно в 20 раз стимулирует добавление молекул ДНК. Роль продукта dnaB в редупликации пока не установлена. Продукт dnaG необходим для инициации синтеза новых фрагментов Оказаки. Существенным компонентом реплисомы может быть также белок, связывающий ДНК, который обнаружен у ряда объектов - прокариот и эукариот. Белок стимулирует редупликацию и рекомбинацию. Видимо, в ходе редупликации он облегчает разделение комплементарных цепей ДНК. Компонентами реплисомы являются также ферменты, названные топоизомеразами. Их функция — изменение степени суперспирализации ДНК и последующего соединения разорванных концов. Наконец, найдено несколько ферментов, которые плавят ДНК (разделяют комплементарные цепи) за счет использования энергии гидролиза АТФ, например продукт гена rep Е. coli. Итак, в репликационной вилке происходит множество событий: раскручивание ДНК, разделение ее комплементарных цепей, синтез затравочного фрагмента РНК с последующим образованием фрагмента Оказаки, удаление РНК-затравки, заполнение образовавшегося односпирального пробела и ковалентное соединение фрагментов Оказаки. Рестрикция и модификация ДНК (от позднелат. restrictio-ограничение и modificatio- видоизменение), специфич. р-ции метаболизма ДНК в клетках бактерий, обеспечивающие защиту собственной ДНК от встраивания в нее последовательностей ДНК чужеродного происхождения. Функционирование систем Р. и м. ДНК (сокращенно Р.) основано на след. принципах. С помощью ферментативных р-ций собств. клеточная ДНК специфич. образом модифицируется так, что рестриктазы оказываются по отношению к этой ДНК неактивными. Любая вторгающаяся в клетку чужеродная ДНК отличается от резидентной (собственной) ДНК по специфичности модификации. Это делает чужеродную ДНК чувствительной к действию рестриктаз; разрушению ("рестрикции") подвергаются те молекулы ДНК, к-рые не содержат соответствующих модифицир. элементов. Таким образом., благодаря системе Р. возможность функционирования чужеродной ДНК в клетке и ее рекомбинации с собств. клеточной ДНК (см. Рекомбинация генетическая)сведены к минимуму. Известно неск. бактериальных систем Р. Наиб. хорошо изучены аллельные системы К и В (разл. структурные состояния гена), определяющие специфичность резидентной ДНК у штаммов Escherichia coli (E. coli), а также неаллель-ные системы RI и RII, генетич. информацию для к-рых несут плазмиды. Подобные системы в клетках животных пока не обнаружены. В большинстве систем модификация осуществляется метилированием N6-аминогруппы остатков аденина в составе тех или иных специфич. участков ДНК с образованием 6-метиламинопурина. Возможны и др. варианты хим. модификации ДНК, осуществляемой компонентами подобных систем. Напр., в системе EcoRII метилируется атом С-5 остатков цитозина, а при контролируемой клеткой-хозяином модификации ДНК Т-четных фагов (инфицируют Е. coli) происходит глюкозилирование остатков гидроксиме-тилцитозина, присутствующего в ДНК этих фагов. Ф-ции рестрикции обусловлены эндонуклеазной активностью рестриктаз, к-рые узнают специфич. последовательности ДНК при условии, что эти последовательности не модифицированы. Фермент катализирует разрыв фосфодиэфирной связи в каждой из двух цепей ДНК вблизи этой последовательности или в др. местах молекулы, что определяется типом фермента. Двухцепочечные разрывы стимулируют дальнейшее интенсивное неспецифич. разрушение ДНК др. нуклеазами. Р. осуществляются только в отношении двухцепочечных молекул ДНК. Одноцепочечные ДНК нек-рых фагов модифицируются или подвергаются рестрикции только тогда, когда они находятся в фазе репликации. В то же время для обеспечения устойчивости к рестриктазам достаточно модификации только одной из цепей ДНК. По этой причине ДНК; образующаяся в ходе полуконсервативной репликации, защищена от действия собств. клеточных рестриктаз благодаря модификации матричной цепи. В. Арбер доказал, что в бактериях действуют специальные ферменты, способные специфично отличать свою ДНК от чужой. Эти ферменты рестрицируют (т.е. ограничивают) возможность размножения фаговой ДНК в бактериях путем ее более или менее специфичной деградации. Такие ферменты были названы эндонуклеазами рестрикции или рестриктазами. Естественной функцией рестриктаз является защита бактерии от инфекции вирусами. ДНК в сайтах рестрикции у самой бактерии модифицирована метилированием, так что фермент рестрикции не может порезать свою собственную ДНК. Однако вирусная ДНК не защищена, и ферменты ее расщепляют .Первая рестриктаза, специфично расщепляющая двухцепочечную ДНК в строго определенных сайтах, была выделена Г. Смитом Известны три класса рестриктаз. В генно-инженерных работах используют ферменты второго класса, разрывающие двухцепочечную ДНК в зоне участка узнавания. Обычно фермент распознает специфичную последовательность из 4-6 п.н., являющуюся палиндромом разрезает ее в середине или несколько в стороне. В последнем случае образуются выступающие одноцепочечные концы, получившие название "липких". Такие концы, сформировавшиеся под действием одной и той же рестриктазы могут гибридизоваться между собой в силу комплементарности оснований. Эта способность обеспечивает возможность объединения различных молекул ДНК. В настоящее время известно более 400 рестриктаз, способных расщеплять ДНК в общей сложности по почти 120 различающимся последовательностям.

 

Генетический контроль и механизмы эксцизионной пострепликативной репарации, репарация неспаренных оснований, репаративный синтез ДНК.

 

Типы структурных повреждений в ДНК и репарационные процессы. Нарушения в процессах репарации как причина наследственных молекулярных болезней.

 

Рекомбинация: гомологический кроссинговер, сайтспецифическая рекомбинация, транспозиции. Доказательство механизма общей рекомбинации по схеме «разрыв-воссоединение».

Генетическая рекомбинация подразумевает несколько типов перераспределения наследственных факторов: 1. Рекомбинация хромосомных и нехромосомных генов. Примером в данном случае может служить рекомбинация ядерных и неядерных генов, происходящая в результате гетерогамии у эукариотических организмов, а также перераспределение «хромосомы» и нехромосомных элементов типа плазмид и эписом у бактерий. 2. Рекомбинация целых негомологичных хромосом. 3. Рекомбинация участков хромосом или иных генофоров, представленных непрерывными молекулами ДНК. Этот тип рекомбинации принято подразделять на три подтипа. Регулярная, или общая, рекомбинация, представляющая собой кроссинговер, т. е. обмен гомологичными участками в различных точках гомологичных хромосом, приводящий к появлению нового сочетания сцепленных генов. Это, как правило, и подразумевают под словом рекомбинация, неоправданно сужая значение термина. В отличие от общей рекомбинации, сайт-специфическая рекомбинация происходит под контролем ферментов, опознающих специфические последовательности нуклеотидов, присутствующие на одной или двух рекомбинирующих молекулах. С помощью этого типа рекомбинации бактериальные вирусы и мобильные элементы перемещаются по геному. Сайт-специфическая рекомбинация была открыта в результате исследований механизма перемещения бактериофага А по хромосоме Е.coli. В интегрированном состоянии вирус внедрен в бактериальную хромосому и реплицируется как часть ДНК клетки-хозяина. Когда вирус проникает в клетку, на матрице вирусного гена синтезируется фермент А-интеграза. Этот фермент и катализирует процесс рекомбинации, начинающийся тогда, когда несколько молекул белка интегразы плотно связываются со специфическими последовательностями на кольцевой хромосоме фага. Получившийся ДНК-белковый комплекс теперь связывается со сходными, но не идентичными последовательностями на бактериальной хромосоме, сближая тем самым бактериальную и фаговую хромосомы. Затем интеграза делает надрезы в молекулах ДНК, формируя маленький участок сочленения гетеродуплекса. Интеграза напоминает ДНК-топоизомеразу в том отношении, что она формирует ковалентную связь с ДНК в тех же местах, где и разрывает. Тот же самый механизм сайт-специфической рекомбинации приходит в действие, только в обратном направлении, когда фаг l вырезается из сайта интеграции. Иногда в результате мейоза получаются три копии материнского аллеля и только одна копия отцовского, что свидетельствует об изменении одной копии отцовского аллеля в материнский. Это явление называется генной конверсией. Оно часто происходит в связи с событиями общей рекомбинации и репарации ДНК. Незаконная, или неправильная, рекомбинация, включающая негомологичные обмены, т. е. транслокации, инверсии, а также случаи неравного кроссинговера. Современные представления о механизме кроссинговера восходят к представлениям школы Т. Моргана, согласно которым рекомбинация сцепленных генов заключается в разрыве гомологичных хроматид с последующим реципрокным соединением их в новом сочетании (гипотеза разрыв — слияние). В 1930 г. Х. Винклер выдвинул гипотезу конверсии, согласно которой в гетерозиготе могут происходить направленные превращения одного аллеля в другой по типу:В результате такого процесса при гаметогенезе образуются все четыре типа гамет, наблюдаемые при расщеплении дигетерозиготы. Еще одна гипотеза, пытавшаяся объяснить появление рекомбинантных потомков у дигетерозигот по сцепленным генам, предложена в 1931 г. Дж. Беллингом. Согласно ей при воспроизведении хромосом в первую очередь удваиваются хромомеры, а затем происходит удвоение хромонем, которые могут соединить дочерние хромомеры в прежней или в рекомбинантной последовательности. Гипотеза Дж. Беллинга была оставлена, как и гипотеза Х. Винклера, и возрождена позже в модифицированной форме для объяснения тех случаев, когда в расщеплении дигетерозиготы появляется только один из двух реципрокных рекомбинантов. В частности, при изучении рекомбинации у бактериофагов оказалось, что некоторые клетки Е. coli, совместно инфицированные двумя генетически различными частицами одного и того же бактериофага, продуцируют лишь один из реципрокных рекомбинантных классов. Объяснение этого явления заключалось в том, что при размножении бактериофага редупликация ДНК может происходить частично по матрице одного, а частично по матрице другого фага. Такой гипотетический механизм, , назван копированием со сменой матриц. В соответствии с этой гипотезой синтез ДНК должен происходить не по полуконсервативному, а по консервативному типу, что противоречит механизму редупликации, который был доказан в экспериментах М. Мезельсона и Ф. Сталя. Гомологичная рекомбинация происходит между двумя дуплексными молекулами ДНК. Следует подчеркнуть, что ферменты, участвующие в этом процессе, могут использовать в качестве субстрата любую пару гомологичных последовательностей. Гомологичные хромосомы притягиваются друг к другу, конъюгируют в одном или более районе, формируя биваленты. Когда процесс спаривания хромосом завершен, хромосомы соединяются латерально за счет структуры, называемой синаптонемальным комплексом. Рекомбинация между хромосомами подразумевает физический обмен частями, происходящий по принципу «разрыв и воссоединение», в ходе которых две несестринские хроматиды рвутся и затем воссоединяются. Когда хромосомы начинают расходиться, их контакты между собой остаются в виде так называемых хиазм. Традиционно считается, что хиазмы представляют собой отражение существования кроссинговера, хотя формальных доказательств этой связи до сих пор не получено. первым шагом к началу рекомбинации ДНК является сближение двух дуплексных молекул ДНК. Существует много доказательств того, что даже единственной бреши только в одной цепи молекулы ДНК достаточно для инициации общей рекомбинации. Химические препараты или облучение, приводящие к образованию однонитчатых брешей, будут стимулировать рекомбинацию. Первым шагом в синапсисе является спаривание комплементарных последовательностей нуклеотидов. В результате образуется трехцепочечная структура. После этого короткий участок, в котором нити из двух различных молекул начинали спариваться, увеличивается из-за «миграции ветви» . «Миграция ветви» может происходить в любой точке, где две одиночные цепи ДНК, имеющие одинаковые последовательности, конкурируют за возможность спариваться с одной и той же комплементарной цепью. Неспаренный участок одной из одиночных цепей заменяется спаренным районом другой, двигая точку ветвления. Спонтанное движение ветви равновероятно в любом направлении. После этого у большинства изученных организмов наступает стадия формирования перекрестного обмена цепей, или структур Холлидея В этих структурах две гомологичные молекулы ДНК, которые раньше были спарены, теперь удерживаются вместе за счет сформировавшихся обменов между двумя из четырех цепей: по одной из каждой молекулы ДНК. Структура Холлидея имеет две особенности: 1) точка обмена между цепями может быстро мигрировать вперед и назад; 2) она состоит из двух пар цепей — одна пара пересекающихся и одна пара непересекающихся. Для того чтобы восстановить две раздельные спирали ДНК и таким образом закончить процесс спаривания молекул, две пересекающиеся цепи должны быть разрезаны. Если они разрезаны до изомеризации, две исходные спирали отделяются одна от другой почти неизмененными. Если пересекающиеся нити разрезаны после изомеризации, одна секция каждой из исходных спиралей ДНК соединяется с секцией другой молекулы, другими словами, две спирали ДНК испытывают кроссинговер.

 

 

Генетический контроль мутационного процесса. Связь мутабильности с функциями аппарата репликации. Механизмы спонтанного мутагенеза, гены мутаторы и антимутаторы. Механизмы действия аналогов оснований азотистой кислоты, акридиновых красителей, алкилирующих агентов.

Мутации возникают не мгновенно. Вначале под воздействием мутагенов возникает предмутационное состояние клетки. Различные репарационные системы стремятся устранить это состояние, и тогда мутация не реализуется. Основу репарационных систем составляют различные ферменты, закодированные в генотипе клетки (организма). Таким образом, мутагенез находится под генетическим контролем клетки; это – не физико-химический, а биологический процесс. Напомним, что гены всех без исключения организмов могут находиться в трех функциональных состояниях: неактивном (репрессия), когда обе цепи ДНК образуют двойную спираль, как бы защищенную от внешних воздействий, особенно у эукариот, молекулами специальных белков, так что ген молчит; активном (дерепрессия), когда белковая защита снята, цепи ДНК раскручены и на одной из них идет синтез молекул информационной РНК; и в состоянии репликации , когда двойная спираль ДНК раскручивается и на обеих цепях идет синтез ДНК-копий. Регулировать функциональное состояние тех или иных генов удается, меняя условия культивирования клеток. Еще в 60-е годы обнаружилось, что если синхронизировать деление бактерий и в разные сроки кратковременно облучать их ультрафиолетовыми лучами, то по мере репликации ДНК мутационный спектр меняется -- чаще мутируются то одни, то другие гены. Измененная мутабильность как бы скользит по молекуле ДНК, совпадая с точкой репликации . Явление это, указывающее на связь индуцированной мутабильности гена с его функциональным состоянием, использовали для картирования хромосом некоторых бактерий. Особенности действия химических мутагенов. К химическим мутагенам относятся самые разнообразные вещества. Рассмотрим мутагенное действие некоторых из них. Алкилирующие агенты. Вызывают алкилирование ДНК (например, метилирование, этилирование и т.д.). В результате при репликации ДНК нарушается принцип комплементарности, и происходит замена нуклеотидных пар: ГЦ > АТ; ГЦ > ЦГ; ГЦ > ТА Некоторые из алкилирующих агентов в природе не встречаются, их не распознают ферменты защитных систем. Такие вещества называются супермутагенами (например, N-метил-N-нитрозомочевина). Супермутагены применяются в селекции растений для получения индуцированных мутаций; их используют также как стимуляторы роста (в сверхмалых концентрациях). Гидроксиламин. Избирательно аминирует цитозин, что также нарушает принцип комплементарности при репликации ДНК. В результате происходит замена ГЦ > АТ. Нитриты. Осуществляют окислительное дезаминирование гуанина, аденина, цитозина. Также нарушается принцип комплементарности при репликации ДНК. В результате происходит замена АТ > ГЦ. Аналоги оснований. Это вещества, сходные с «обычными» азотистыми основаниями. Однако они способны образовывать комплементарные пары с разными «нормальными» основаниями. Например, при репликации ДНК напротив гуанина вместо цитозина достраивается 5-бромурацил (аналог тимина). В дальнейшем напротив 5-бромурацила достраивается аденин, а напротив аденина – обычный тимин. Этот же процесс может идти и в противоположную сторону. В результате происходят замены: ГЦ > АТ или АТ > ГЦ. Существует множество иных химических факторов, обладающих мутагенным, канцерогенным и тератогенным действием. Например, ионы тяжелых металлов, связываясь с ферментами репликации, репарации и рекомбинации, снижают их ферментативную активность. Таким образом, не являясь собственно мутагенами, ионы тяжелых металлов способствуют появлению мутаций. Кроме того, нужно учесть, что воздействие совершенно разных мутагенов может приводить к сходным результатам. Спонтанные мутации – мутации, возникающие при нормальных условиях жизни. Спонтанный процесс зависит от внутренних и внешних факторов. Метод учета спонтанных доминантных мутаций основана том, что в редких случаях у 1 из детей появится доминантный признак, отсутствующий у обоих родит. Это должно свидетельствовать о возникновении спонтанной мутации. Частоту возникновения в генеративных тканях чел спонтанных рецессивных мут рассчитал Холдейн (эта величина равна от 1*10-5 до 5*10-5 за поколение). Курт Браун предложил пряиой метод оценки спонтанных генных, хромосомных и геномных мут. Он основан на изучении популяционной выборки новорожденных, частота мут рассчитывается m=число спонтанных случаев проявления данной аномалии / 2*число обследованных инвалидов. Средняя частота спонтанного возникновения мутаций в структурных локусах человека колеблется в пределах от 10-5 до 10- 6 на одну гамету за каждое поколение. Эта величина значительно варьирует для разных генов, меняясь в пределах от 10-4 для высокомутабильных локусов до 10-11 в наиболее устойчивых частях генома. Эти различия зависят от многих факторов и, в первую очередь, от характера мутационного повреждения, от механизма возникновения мутации и локализации нарушения. Большое значение имеет сам ген, протяженность его кодирующих областей и те функции, которые выполняют контролируемые им молекулы в обеспечении жизнедеятельности клеток и всего организма в целом. Так, например, нарушение работы генов, продукция которых необходима на ранних стадиях эмбриогенеза, может приводить к гибели плода. Такие мутации трудны для диагностики, и в практической медицине мы чаще всего имеем дело только с теми мутациями, которые не проявляют летального эффекта на ранних стадиях эмбрионального развития. Однако не исключено, что ранние эмбриональные летали составляют немалый процент среди мутантных аллелей различных генов и вносят определенный вклад в снижение репродуктивной функции.

Понятие о мутагенных индуцибельных путях репарации: УФ-мутагенез. Мутагенез, опосредованный через процессы рекомбинации. Механизмы автономной нестабильности генома, роль мобильных генетических элементов (МГЭ).

Деятельность внутриклеточных систем репарации, биологической ролью которых является устранение повреждений структуры ДНК, возникающих под влиянием разнообразных агентов. Именно деятельность этих систем ограничивает реализацию механизмов повреждения клетки под действием не только УФ-излучения, но и радиации и химических мутагенов. Однако, первый из открытых механизмов репарации – фотореактивация – полностью направлен против димеров пиримидинов – основных повреждений, индуцированных УФ-радиацией в ДНК. Фотореактивация, как и репарация в целом, это ферментативный процесс. Фермент ДНК – фотолиаза в темноте перемещается вдоль молекулы ДНК, отыскивает димер и фиксируется около него. При облучении сине-фиолетовым светом или действии ближнего УФ-света фотолиаза использует энергию этого света и восстанавливает исходную структуру ДНК, мономеризуя димеры. Следовательно, фотореактивация – это безошибочно функционирующая высокоспецифичная система, устраняющая лишь один, но важнейший, фотопродукт – циклобутановые димеры пиримидинов. Поэтому ослабление любого биологического эффекта УФ-излучения при последующем освещении видимым светом рассматривается как доказательство участия в этом эффекте димеров как непосредственных продуктов воздействия УФ-излучения. Другие системы репарации, имеющиеся в клетке, менее специфичны, чем фотореактация, не нуждаются в свете и, наряду с димерами, способны устранять и другие изменения структуры ДНК. Существование репаративных систем обеспечивает генетическую стабильность ДНК и представляет собой важнейший механизм относительной стабильности органических видов. Определенные гены могут быть мутагенизированы с помощью гомологичной рекомбинации для того, чтобы наблюдать либо эффект инактивации данного гена, либо эффект небольших изменений в нуклеотидной последовательности ДНК данного гена. Гомологичная рекомбинация в результате одиночного кроссовера внутри гена инактивирует ген только в том случае, если рекомбинирующий фрагмент не содержит ни начала, ни конца транскрипционной единицы. Для получения мутации с более протяженным фрагментом требуется реципрокная двойная рекомбинация. Этот подход позволил охарактеризовать функции многих цианобактериальных генов. Поскольку фенотип транспозонного мутанта может быть результатом комбинированного эффекта спонтанной мутации где-нибудь в геноме и устойчивости к антибиотику, привнесенной транспозоном, обычно реконструируют такие мутанты с помощью гомологичной рекомбинации, чтобы проверить, действительно ли обусловлен мутантный фенотип только инсерцией транспозона в данный ген. Двойная рекомбинация в одних штаммах цианобактерий происходит чаще, в других - реже. Одним из успешных способов селекции двойных рекомбинантов, например, в Anabaena 7120 может послужить использование гена sacB. Присутствие гена sacB при высокой концентрации сахарозы в твердой среде летально для клеток. Введение мутантного аллеля в результате одиночного кроссинговера и затем использование sacB для селекции одной из двух полученных копий вводимого аллеля, позволяет заменить аллель дикого типа мутантным аллелем без введения в клетку гена устойчивости к антибиотику. Такой подход может оказаться очень удобным, если, например, нужно получить штамм, который будет активно использоваться (например, если нужно инактивировать ген, кодирующий эндонуклеазу рестрикции), а ген, определяющий устойчивость к антибиотику, может быть включен в будущие плазмидные векторы, которые будут работать в данном штамме. Целые гены могут быть делетированы, и рекомбинантные формы исходного гена затем могут быть введены в клетку для изучения, например, влияния одиночных или множественных аминокислотных замен на функцию белка, кодируемого данным геном. Транспозиционная активность МГЭ является основной причиной возникновения спонтанных мутаций. МГЭ имеют определенную структурную организацию, благодаря которой могут перемещаться в геноме как в пределах одной хромосомы, так и между хромосомами. МГЭ имеют способность увеличивать число копий в геноме хозяина, вызывать мутации, встраиваясь в гены или окрестности генов, служить причиной хромосомных перестроек, влиять на фертильность особей и даже приводить организм к гибели. Способны изменять – как понижать, так и повышать – уровень активности близлежащих генов. В их структуре есть большое количество регуляторных сайтов и сигнальных последовательностей, а это означает, что МГЭ могут очень интенсивно воздействовать на работу гена, не разрушая сам ген. За исключением дрозофилы, активность мобильных элементов низка в малых геномах, в которых кодирующие гены составляют заметную его часть. В больших же по размеру геномах с более активными элементами только малая доля генома будет менее чувствительна к повреждающим инсерциям. Здесь следует подчеркнуть, что в обоих случаях клетка хозяина контролирует мобильность генетических элементов. Известно два таких механизма контроля: косупрессия, обычно опосредуемая малыми интерферирующими РНК (siRNA), и метилирование. При косупрессии подавляется экпрессия вновь встроенных трансгенов и их эндогенных гомологов. Некоторые МГЭ обладают способностью вызывать гибридный дисгенез. Гибридный дисгенез проявляется у потомства в виде повышенной частоты генных мутаций, хромосомных аббераций и нерасхождения хромосом, явления рекомбинации у самцов, а также стерильности гибридов.

 

Регуляция транскриции на уровне промотора, функции РНК-полимеразы. Принципы негативного и позитивного контроля. Системная регуляция; роль циклической АМФ и гуанозинтрифосфата. Оперонные системы регуляции (теория Жакоба и Моно). Генетический анализ лактозного оперона. Регуляция транскрипции на уровне терминации на примере триптофанового оперона.

РНК-полимераза – это фермент, который считывает ген. инф. с ДНК и синтезирует матричную РНК. В РНК-полимеразе есть ко-фактор – белок, который распознает промотор и помогает РНК-полимеразе на него сесть и начать транскрипцию. Т. о. переключается работа больших групп генов, это такая системная регуляция. Клетка переключается с одной жизненной программы на другую. Очень большую роль во всех этих процессах играет циклический аденазинмонофосфат (цАМФ). Он – типичный регулятор внутриклеточного метаболизма. Такая система изменения активности аденилатциклазы и, соот-о, конц-ии цикл. АМФ в клетке, работают не только у бактерий, но и у оч. многих орг-в, в том числе у чел. Чз аденилатциклазу, регулируя ее активность, действуют некоторые гормоны. Меняя концентрацию циклического АМФ, эти гормоны влияют на внутриклеточные процессы. Общую теорию регуляции синтеза белка разработали Ф. Жакоб и Ж. Моно. Сущность этой теории сводится к «выключению» или «включению» генов как функц-х единиц, к возможности или невозможности проявления их способности передавать закодированную в структурных генах ДНК генетическую информацию для синтеза специфических белков. Эта теория, доказанная в опытах на бактериях, получила широкое признание, хотя в эукариотических клетках мех-м регул. синтеза белка вероятно более сложный. У бактерий доказана индукция ферментов (т. е. синтез ферментов de novo) при добавлении в пит. ср. субстратов этих ферментов. Добавление конечных продуктов реакции, образование которых катализируется этими же ферментами, напротив, вызывает уменьшение количества синтезируемых ферментов. Это последнее явление получило название репрессии синтеза ферментов. Оба явления — индукция и репрессия — взаимосвязаны. Согласно теории Жакоба и Моно в биосинтезе белка у бак. уч-т по крайней мере три типа генов: структурные гены, ген-регулятор и ген-оператор. Структурные гены определяют первичную структуру синтезируемого белка. Именно эти гены в цепи ДНК являются основой для биосинтеза мРНК, которая затем поступает в рибосому и, как было указано выше, служит матрицей для биосинтеза белка. Синтез мРНК на структурных генах молекулы ДНК непосредственно контролируется определенным участком, называемым геном-оператором. Он служит как бы пусковым механизмом для функционирования структурных генов. Ген-оператор локализован на крайнем отрезке структурного гена или структурных генов, регулируемых им. «Считывание» генетического кода, т. е. формирование мРНК, начинается спромотора— участка ДНК, являющегося точкой инициации для синтеза мРНК, и далее распространяется последовательно вдоль оператора и структурных генов. Координированный одним оператором одиночный ген или группа структурных генов образует оперон. Деят-ть оперона находится под контролир-м влиянием другого участка цепи ДНК, получившего название гена-регулятора. Поскольку структурные гены и ген-регулятор находятся в разных участках цепи ДНК, связь между ними, как предполагают Ф. Жакоб и Ж. Моно, осуществляется при помощи вещества-посредника, оказавшегося белком и названного репрессором. Образование репрессора происходит в рибосомах ядра на матрице специфической мРНК, синтезированной на гене-регуляторе. Репрессор имеет сродство к гену-оператору и обратимо соединяется с ним в комплекс. Образование такого комплекса приводит к блокир. синтеза мРНК и, след-о, синтеза белка, т.е. функция гена-регулятора состоит, в том, чтобы через белок-репрессор прекращать деятельность структурных генов, синтезирующих мРНК. Репрессор, кроме того, обладает способностью строго специфически связываться с определенными низкомолекулярными веществами, называемыми индукторами, или эффекторами. Когда такой индуктор соединяется с репрессором, последний теряет способность связываться с геном-оператором, который таким образом выходит из-под контроля гена-регулятора, и начинается синтез мРНК. Это типичный пример отрицательной формы контроля, когда индуктор, соединяясь с белком-репрессором, вызывает изменения его третичной структуры настолько, что репрессор теряет способность связываться с геном-оператором. Многочисленные известные регуляторные белки можно разделить по механизму действия на четыре группы. Негативная генетическая регуляция, т. е. выключение соответствующих генов, может вызываться репрессорами. Некоторые репрессоры связываются с ДНК только в отсутствие специфического лиганда. Комплекс репрессора с лигандом в этом случае теряет способность к связыванию и оставляет свободным участок промотора для присоединения РНК-полимеразы. Часто свободный от лиганда репрессор не может связываться с ДНК, т. е. транскрипция подавляется только в присутствии лигандов. Аналогично при позитивной генетической регуляции можно различать два случая. Если связывается только свободный индуктор, транскрипция подавляется соответствующими лигандами. Напротив, многие индукторы становятся активными только после образования комплекса с лигандом. К этой группе принадлежат, например, стероидные гормоны. Лактозный оперон-лактозный оперон бактерии Е. coli (участок ДНК), который подвержен одновременно негативному и позитивному контролю. Оперон содержит структурные гены трех ферм., кот. необходимы для утилизации лактозы, и регуляторные элементы для упр. транскрипцией оперона. Так как лактоза превращается в кл. в глюкозу, экспрессия генов лактозного оперона не имеет смысла, когда глюкоза присутствует в клетке. Действительно гены транскрибируются только в отсутствие глюкозы и в присутствии лактозы. Регуляция достигается благодаря взаимодействию двух регуляторных белков. В отсутствие лактозы lac-penpeccop блокирует участок промотора. При наличии лак. она превращается в изомерную аллолактозу, которая связывается с белком-репрессором и тем самым вызывает диссоциацию репрессора и оператора. Тем не менее этого недостаточно для транскрипции структурных генов. Для связывания РНК-полимеразы необходим индуктор, белок-активатор катаболитных оперонов (САР от англ. catabolite activator protein), который связывается с ДНК только в комплексе с цАМФ (cAMP). Сигнал голодания возникает только в отсутствие глюкозы. Процесс транскрипции начинается с прикрепления РНК-полимеразы, катализирующей синтез иРНК, к опр. участку ДНК, называемому промотором (Р). Когда молекула репрессора "садится" на операторный участок, она "закрывает" промотор, тем самым препятствуя связыванию с ним РНК-полимеразы и началу транскрипции. У прокариот пять генов, кодирующих синтез ферментов триптофанового пути, образуют оперон. Ген-регулятор обеспечивает синтез аллостерического белка — триптофанового репрессора, не активного в свободном состоянии. Последний в таком виде не связывается с операторным участком и, след-о, не может препятствовать началу транскрипции. Когда конеч. пр-т метаболического пути (триптофан) накапл. выше опр. уровня, он взаимод. с репрессором и активирует его. Активированный репрессор присоединяется к операторному участку и подавляет транскрипцию триптофанового оперона. Т. о.триптофан является корепрессором.

 

Принципы регуляции действия генов у эукариот. Транскрипционно активный хроматин. Регуляторная роль, гистонов, негистоновых белков, гормонов. Особенности организации промоторной области у эукариот. Посттранскрипционный уровень регуляции синтеза белков. Роль мигрирующих генетических элементов в регуляции генного действия.

У эукариот наряду с регуляторными процессами, влияющими на функционирование отдельной клетки, существуют системы регуляции организма как целого. Гормоны образуются в специализированных клетках желез внутренней секреции и с кровью разносятся по всему телу. Но регулируют они процессы синтеза РНК и белков лишь в так называемых клетках-мишенях. Гормоны связываются с белками-рецепторами, расположенными в мембранах таких клеток, и включают системы изменения структуры клеточных белков. Те в свою очередь могут влиять как на синтез белков на рибосомах, так и на транскрипцию определенных генов. Каждый гормон через систему посредников активирует свою группу генов. Так, например, адреналин включает синтез ферментов, расщепляющих гликоген мышц до глюкозы, а другой гормон – инсулин влияет на образование гликогена из глюкозы в печени. У эукариот синтез РНК происходит в ядре клетки, а синтез белков – в цитоплазме. Образующиеся в ядре информационные РНК подвергаются там целому ряду изменений под действием ферментов и в комплексе с различными белками проходят через ядерную оболочку. Разные иРНК транслируются в разное время после их образования. Это зависит от того, с какими белками они связаны в цитоплазме. В отсутствие гормонального сигнала некоторые иРНК остаются нетранслированными долгое время. Разнообразие форм и функций клеток разных организмов зависит от сложного взаимодействия различных генов между собой и с многочисленными веществами, попадающими в клетку извне или образующимися в ней. Познание регуляторных механизмов транскрипции и трансляции необходимо для управления процессами реализации генетической информации. С помощью методов молекулярной биологии было исследовано регуляторное действие гистонов и негистоновых хромосомных белков. Как выяснилось, гистоны, особенно гистон H1, оказывают тормозящее действие на ДНК-зависимый синтез РНК. Негистоновым хромосомным белкам тоже приписывают специфические регуляторные функции . Эти белки снимают блокирующее действие гистонов. На их важную роль указывают, помимо прочего, их большое многообразие, неодинаковое содержание их в хроматине различных тканей и на различных стадиях развития, а также результаты экспериментов по реконструкции хроматина. Однако эти данные спорны, так что регуляторное значение гистонов и негистоновых белков остается неясным. У человека важное значение имеет действие половых гормонов. Развитие первичных мужских половых признаков зависит от образования H-Y-антигена , ген которого, вероятно, находится в половой хромосоме. Стероидные гормоны, вырабатываемые гонадами, транспортируются к клеткам-мишеням, связываются имеющимися там аллостерическими белками- рецепторами , изменяют их конформацию и попадают в виде комплекса гормон-рецептор в клеточное ядро . Происходящая после этого активация транскрипции определенных генов, обусловлена воздействием этого комплекса. Промотор у каждого из 100000 генов свой, и хотя можно увидеть в разных промоторах общие элементы, все эти 100 000 промоторов отличаются друг от друга очень сильно. Их длина варьирует от нескольких сотен до нескольких тысяч пар оснований. На этом пространстве располагаются десятки регуляторных последовательностей различного рода, которые связывают белки, регулирующие транскрипцию. Многие из этих последовательностей определены. Они достаточно коротки и просты. Различные регуляторные элементы работают сообща, связывают регуляторные факторы, которые взаимодействуют друг с другом, и эти факторы связывают в свою очередь другие факторы, которые также взаимодействуют друг с другом. К тому же это связывание и взаимодействия зависят не только от того, какие именно регуляторные элементы находятся в промоторной области, но и от того, как они расположены относительно друг друга, и от того, какие еще непромоторные элементы, иногда очень удаленные от гена, вовлечены в его регуляцию. Для каждого гена образуется уникальная мозаика регуляторных элементов, действие которых не аддитивно. Одна и таже последовательность, в зависимости от того, какие последовательности находятся вокруг нее, может узнаваться разными белками. С другой стороны, один и тот же белок может узнавать разные последовательности. Клетки живых организмов обладают способностью синтезировать огромное количество разнообразных белков. Однако они никогда не синтезируют все белки. Количество и разнообразие белков, в частности ферментов, определяются степенью их участия в метаболизме. Более того, интенсивность обмена регулируется скоростью синтеза белка и параллельно контролируется аллостерическим путем. Таким образом, синтез белка регулируется внешними и внутренними факторами и условиями, которые диктуют клетке синтез такого количества белка и такого набора белков, которые необходимы для выполнения физиологических функций. Общую теорию регуляции синтеза белка разработали французские ученые, Ф. Жакоб и Ж. Моно. Сущность этой теории сводится к «выключению» или «включению» генов как функционирующих единиц, к возможности или невозможности проявления их способности передавать закодированную в структурных генах ДНК генетическую информацию на синтез специфических белков. В биосинтезе белка у бактерий участвуют по крайней мере 3 типа генов: структурные гены, ген-регулятор и ген-оператор. Мигрирующие генетические элементы (мобильные гены, прыгающие гены), дискретные фрагменты (сегменты) ДНК, способные встраиваться в разные участки генома; их расположение на хромосомах может меняться как в процессе историч. развития мира организмов, так и в пределах жизни одного индивидуума. Найдены практически во всех изученных организмах - от бактерий до человека. Они весьма разнятся по своему нуклеотидному составу и той роли, которую они играют в клетке.

 

56) Онтогенез как реализация наследственно детерминированной программы развития. Опыты по трансплантации ядер. Методы клонирования генетически идентичных организмов. Функциональные изменения хромосом в онтогенезе (пуффы, «ламповые щетки»); роль гормонов, эмбриональных индукторов. Раздел генетики, изучающий действие генов в онтогенезе, называется генетикой индивидуального развития, феногенетикой или онтогенетикой. Генотип – это программа развития, обусловленная историей развития вида. Фенотип можно определить как результат реализации генотипа в ходе онтогенеза при определенных условиях внешней среды, для которого характерна система признаков и свойств организма. Например, у растений синтез хлорофилла, который контролируется действием генов, не может происходить в темноте, и для этого процесса обязательно наличие света. В идеале каждому генотипу должен соответствовать строго определенный фенотип. Однако такое однозначное соответствие встречается сравнительно редко. Для количественного описания неоднозначного соответствия фенотипа генотипу ввели понятия экспрессивности и пенетрантности генов. Экспрессивностью называется степень выраженности рассматриваемого признака у организмов с одинаковым генотипом. Экспрессивностью характеризуется конкретная особь. Пенетрантностью проявления гена называется отношение числа особей, у которых проявляется данный признак, к общему числу с данным генотипом. Пенетрантностью характеризуется признак в однородной группе особей. При полной пенетрантности (100%) мутантный ген проявляет свое действие у всех особей, имеющих его, а при неполной – лишь у некоторых. Экспрессивность и пенетрантность часто зависят от условия среды, в которой развивается организм: освещения, температуры или влажности. Таким образом, в фенотипе никогда не реализуются все генотипические возможности, т. е. фенотип каждой особи есть лишь частный случай проявления ее генотипа в определенных условиях развития. Формирование различных вариантов признака на основе одного и того же генотипа называется поливариантностью онтогенеза. Опыты по трансплантации ядер: Впервые трансплантацию ядер соматических клеток зародышей в энуклеированные клетки лягушки осуществили американские исследователи Р. Бриггс и Т. Кинг в 1952 году. Ученые, пользуясь микропипеткой, удаляли ядра из яйцеклеток шпорцевой лягушки, а вместо них пересаживали ядра клеток эмбрионов, находящихся на разных стадиях развития. Проведенные исследования показали, что ядра ранних эмбрионов в стадии поздней бластулы и даже ранней гаструлы обладают тотипотентностью и обеспечивают нормальное развитие эмбрионов. Если брать ядра из клеток зародыша на ранней стадии его развития - бластуле, то примерно в 80% случаев зародыш благополучно развивается дальше и превращается в нормального головастика. Если же развитие зародыша, донора ядра, продвинулось на следующую стадию - гаструлу, то лишь менее чем в 20% случаев оперированные яйцеклетки развивались нормально. При пересадке ядер из более дифференцированных клеток (мезодермы и средней кишки) поздней гаструлы у эмбрионов наблюдалось недоразвитие и даже отсутствие нервной системы. После пересадки ядра из клеток более позднего развития яйцеклетки вообще не развивались. В 1983 для трансплантации были использованы ядра неделящихся и полностью дифференцированных клеток крови - эритроцитов лягушки Rana pipiens. После серийной пересадки таких ядер 10% реконструированных яйцеклеток достигали стадии плавающего головастика. Эти эксперименты показали, что некоторые ядра соматических клеток способны сохранять тотипотентность. Пуфыв цитогенетике, вздутия, обнаруженные на т. н. политенных хромосомах; совокупность П. соответствует набору активных (функционирующих) генов в клетке на данной стадии её дифференцировки. Возникновение П. связано с деспирализацией структурных единиц хромосомы — нитей. Крупные П. со сложной структурой называются кольцами Бальбиани. Образование П. детально изучено у представителей двукрылых насекомых (дрозофила). На разных стадиях развития их личинок происходит закономерная смена расположения П. на одних и тех же хромосомах. Это свидетельствует о том, что отдельные участки хромосом функционируют относительно независимо. Показано, что в П. происходит биосинтез ДНК, усиливается синтез и-РНК и белков. Изучение динамики образования П. позволяет понять, как один и тот же хромосомный набор, принципиально сходный во всех клетках организма, участвует в дифференцировке различных клеточных систем. Образование П. контролируется преимущественно генетическими, но также физиологическими и др. факторами. Возникновение новых П. в результате мутаций, под влиянием гормонов, температуры и др. раскрывает перед экспериментаторами широкие возможности управления развитием и дифференцировкой многоклеточных организмов. Сходная с П. картина наблюдается в хромосомах типа т. н. ламповых щёток, обнаруживаемых при образовании яйцеклеток у птиц, рыб, пресмыкающихся и земноводных. В такой хромосоме отдельные участки сильно деспирализуются, образуя петли с повышенной функциональной активностью (синтез РНК и белка). Эмбриональная индукция — взаимодействие между частями развивающегося организма у многоклеточных беспозвоночных и всех хордовых. многие ткани взрослых животных индуцируют нейрализацию эктодермы. также были открыты вещества-индукторы, такие как хордин и ноггин (действуют косвенно, через подавление эпидермального индуктора, его инактивация хордином и ноггином вызывает нейрализацию эктодермы), и многие другие.

Гетерокарионы. Химерные (аллофенные) животные. Совместимость и несовместимость тканей. Роль генов У-хромосомы в определении мужского пола у млекопитающих. Мутации, переопределяющие пол в ходе онтогенеза. Гормональное переопределение пола.

Гетерокарионы — клетки, содержащие два или более ядер, имеющих различные генотипы, которые получаются при слиянии соматических клеток. Гетерокарионы могут быть получены искусственно, слиянием клеток растений либо животных, обработкой клеток животных либо протопластов агентами, вызывающими слияние цитоплазматических мембран и, соответственно, слияние цитоплазм. В качестве агентов, вызывающих слияние, могут использоваться некоторые вирусы (например, вирус Сендай) либо поверхностно-активные вещества (лизолецитин, полиэтиленгликоль). При первом делении гетерокарионы, образованные из клеток животных, могут образовывать одноядерные клетки, при этом случайным образом утрачивается часть хромосом одной или обеих родительских клеток (образование анеуплоидов). Так, деление клеток содержащих гетерокарионы клеток человека и грызунов сопровождается потерей большей части хромосом человека с частым сохранением полного набора хромосом грызуна. Такие клетки, полученные слиянием соматических клеток и способные к дальнейшему делению, называют соматическими гибридами. Одно из перспективных направлений биотехнологии — искусственное получение химер (аллофенных животных). Понятие химера означает составное животное. Сущность метода получения химер заключается в искусственном объединении эмбриональных клеток двух и более животных. Животные могут быть как одной породы, так и разных пород и даже разных видов. Современная микрохирургия позволяет получать химер, имеющих 3—4 и более родителей. Химеры обладают признаками животных разных генотипов. Существует два основных метода получения химер искусственным путем: 1) агрегационный — объединение двух и более морул или бластоцист в один эмбрион; 2) инъекционный — микроинъекция клеток внутриклеточной массы (ВКМ) бластоцисты доноров в бластоцель эмбриона-реципиента. В обоих случаях получают особей, ткани и органы которых построены из клонов клеток объединенных (двух или более) эмбрионов. Первыми созданы химеры лабораторных мышей между линиями агути (кремовые) и не агути (черные). Они выглядели крапчатыми. Их окраска сочетала признаки обоих родителей: полосы пигментированной шерсти чередовались со светлыми, каждая полоса представляла клон клетки-родоначальницы. Их использование помогает изучению фундаментальных проблем дифференцировки клеток в процессе онтогенеза, многих вопросов механизма клеточного развития и происхождения отдельных тканей, иммунологического взаимодействия в развитии и т. д. Тканевая несовместимость - невозможность совместного существования клеток и тканей, принадлежащих генетически различным особям и различающихся антигенами. Благодаря существующему в природе генетическому разнообразию клетки и ткани любых двух особей различаются по множеству антигенов тканевой совместимости (называемых также антигенами гистосовместимости, трансплантационными антигенами). При пересадке органа или ткани (трансплантации) через короткий срок после приживления происходит отторжение трансплантата, повреждаемого лимфоцитами и цитотоксичными антителами организма-хозяина (реципиента). Совместимы только генетически однородные ткани, например ткани однояйцевых близнецов. Чтобы сделать совместимыми ткани генетически различающихся особей, нужно каким-то образом вмешаться в выражение генов гистосовместимости, вызвать подавление (репрессию) одних генов и компенсировать деятельность недостающих генов, а это остаётся пока невыполнимой задачей. При разведении лабораторных животных путём близкородственного скрещивания (брат - сестра, дети - родители) сравнительно легко можно вывести линии генетически сходных, а потому и совместимых особей. В трансплантационной иммунологии преодоление тканевой несовместимости достигается подавлением иммунного ответа реципиента и созданием иммунологической толерантности. Это не устраняет несовместимости как таковой, но обеспечивает сосуществование генетически разнородных тканей. Доказательства того, что половые хромосомы определяют пол организма, были получены при изучении нерасхождения половых хромосом у дрозофилы. Если в одну из гамет попадут обе половые хромосом, а в другую — ни одной, то при слиянии таких гамет с нормальными могут получиться особи с набором половых хромосом ХХХ, ХО, ХХУ и др. Выяснилось, что у дрозофилы особи с набором ХО — самцы, а с набором ХХУ — самки (у человека — наоборот). Особи с набором ХХХ имеют гипертрофированные признаки женского пола (сверхсамки). В дальнейшем было доказано, что у дрозофилы пол определяется соотношением (балансом) между числом X-хромосом и числом наборов аутосом. Гормональное определение пола. При изучении роли половых хромосом в развитии гонад было показано, что определяющим у человека является наличие или отсутствие Y-хромосомы. При отсутствии Y-хромосомы происходит дифференциация гонад в яичники и развивается женщина. В присутствии Y-хромосомы развивается мужская система. Очевидно, Y-хромосома производит вещество, стимулирующее дифференциацию яичек. Следующий этап продолжают гормоны, определяющие процесс половой дифференциации плода и его анатомическое развитие. При рождении первая часть программы заканчивается. После рождения эстафета переходит к факторам среды, которые завершают формирование пола—обычно, но не всегда в соответствии с генетическим полом. Это может приводить к появлению транссексуальности, возникновению гетеросексуального, бисексуального или гомосексуального поведения и образа жизни.

Задачи и методология генетической инженерии. Методы выделения и синтеза генов. Понятие о векторах. Векторы на основе плазмид и ДНК фагов.

В задачу генетической инженерии входит решение трех основных задач: 1) конструирование функционально активных генетических структур в виде… Генетическая инженерия на клеточном, хромосомном уровнях и при помощи…

Генетическая гетерогенность популяций. Факторы динамики генетического состава популяции (дрейф генов), мутационный процесс, межпопуляционные миграции, действие отбора. Взаимодействие факторов динамики генетической структуры в природных популяциях.

Основные факторы генетической эволюции в популяциях – С. С. Четвериков, Р. Фишер, С. Райт, Н. II. Дубинин, Д. Д. Ромашов и др. заложили основы современных идей о факторах, определяющих генетическую эволюцию популяций. Использование формул Харди - Вайнберга позволяет рассчитать генетический состав в популяции в данный момент и определить тенденции его изменений в ряду поколений. В целом популяции видов испытывают постоянную эволюцию их генетической структуры. Основными факторами такой эволюции являются: 1) мутации; 2) отбор (естественный и искусственный); 3) генетико-автоматические процессы, или, по-другому, дрейф генов – процессы чисто случайных изменений концентраций аллелей или зависимых от других генетических процессов – сопряженный дрейф аллелей; 4) миграции – естественные процессы смешения популяций или искусственное скрещивание друг с другом разных пород, сортов и видов. 1. Мутации изменяют частоту генов в популяциях. Частота мутирования гена — 10-5 – 10-7 на поколение. Учитывая большое количество генов у человека (порядка 30 0000), до 6% его гамет несут мутантные гены. Доминантные мутации проявляются уже в первом поколении и сразу же подвергаются действию естественного отбора. Рецессивные мутации (возникают значительно чаще) сначала накапливаются в популяции и только с появлением рецессивных гомозигот начинают проявляться фенотипически и подвергаться действию естественного отбора. Насыщенность природных популяций рецессивными мутациями называется генетическим грузом и имеет большое значение для выживания вида. Генетическим грузом в человеческих популяциях объясняется появление до 5% потомков с генетическими дефектами. Накопление мутантных аллелей способствует комбинативной изменчивости, приводящей к генетической гетерогенности (генетическому полиморфизму) природных популяций. Средняя степень гетерозиготности в популяциях растений составляет 17%, у беспозвоночных — 13,4%, у позвоночных — 6,6%, у человека — около 6,7%. Мутационный процесс обеспечивает разнообразие эволюционного материала. 2. Дрейф генов – это случайные колебания частот генов в малых популяциях. Предположим, что на необитаемый остров попало зерно гетерозиготного самоопыляемого растения. Исходная популяция будет состоять на 100% из гетерозиготных особей (Аа). В первом поколении уже будет содержаться только 50% гетерозиготных особей: Р: Аа х Аа, F1 будет: АА + 2Аа + аа. Гомозиготы (АА и аа) дадут только гомозиготных потомков, а гетерозиготы — расщепление 1:1 (поровну гомо- и гетерозигот), поэтому в F2 уже будет 25% гетерозигот. 3. Изоляция – это ограничение свободы скрещивания. Она способствует дивергенции — разделению популяций на отдельные группы и изменению частот генотипов. Различают географический (горные хребты, реки, проливы и т.п.), генетический (неполноценность гибридов, различные наборы хромосом), экологический (различные экологические ниши, размножение при разных температурах) и морфофизиологический (различия в строении половых органов) типы изоляции. В человеческих популяциях наиболее существенной является эколого-этологическая изоляция, включающая религиозные и морально-этические ограничения браков. В малых человеческих популяциях (демах, изолятах) наблюдаются дрейф генов и инбридинг (родственные браки). Эти браки нежелательны, они приводят к инбредной депрессии, так как у родственников высокая степень вероятности гетерозиготности по одному и тому же рецессивному патологическому гену. Например, частота больных фенилкетонурией при неродственных браках составляет 1:15000, а при родственных — 1:7000, альбинизмом — 1:40000 и 1:3000 соответственно. Мерой генетических последствий инбридинга служит коэффициент инбридинга – это вероятность того, что у какой-либо особи в данном локусе окажутся два аллеля, идентичные по происхождению. У детей одной супружеской пары вероятность одинаковых аллелей в одном локусе равна 1/2. У их детей эта вероятность становится 1/4 (1/2xl/2). При вступлении в брак двоюродных сибсов коэффициент инбридинга равен 1/16 (1/4х l/4). Аутбридииг — неродственные браки. Они поддерживают высокий уровень гетерозиготности. Повышению гeтерозиготности человеческих популяций способствует миграция, масштабы которой огромны особенно в последний десятилетия. Иммиграция поставляет новые аллели или новые комбинации генотипов, а эмиграция изменяет со отношение различных генотипов в популяции. Повышение уровня гетерозиготности является одной из причин акселерации (ускорения развитияи повышения массы тела и роста людей). 4. Естественный отбор элиминирует из популяции менее удачные комбинации генов и избирательно сохраняет более удачные генотипы, тем самым, изменяя частоту генов в популяциях. Интенсивность естественного отбора даже в современных человеческих популяциях довольно высокая: спонтанные аборты составляют примерно 50% всех зачатий; мертворождения — 3%; ранняя детская смертность— 2%; не вступают в брак около 20% людей; примерно 10% браков бесплодны. Таким образом, около 75% людей не вносят свой вклад в генофонд будущих поколений. Помимо естественного отбора в популяциях (в том числе и человеческих) может действовать и контротбор — это отбор неблагоприятных в обычных условиях среды признаков. Например, в странах Западной Африки частота патологического гена серповидно-клеточной анемии довольно высока, в то время как в странах умеренного климата он не встречается. Такая распространенность данного гена объясняется устойчивостью гетерозигот к тропической малярии. Гомозиготы по гемоглобину А (АА) имеют нормальный гемоглобин А, способный связывать и переносить кислород, но болеют и умирают от тропической малярии. Гомозиготы рецессивные (аа) болеют серповидно-клеточной анемией, их гемоглобин 8 не связывает кислород и они погибают в раннем детском возрасте от его недостатка. Гетерозиготы (Аа) содержат и гемоглобин А (переносит кислород) и гемоглобин S (обеспечивает устойчивость к тропической малярии) и выживают в эндемичных по тропической малярии зонах.

64) Понятие о внутрипопуляционном генетическом полиморфизме и генетическом грузе. Естественный отбор как направляющий фактор эволюции популяций. Понятие о приспособленности и коэффициенте отбора. Формы отбора: движущий, стабилизирующий дизруптивный. Роль генетических факторов в эволюции. Насыщенность природных популяций рецессивными мутациями называется генетическим грузом и имеет большое значение для выживания вида. Например, при применении первых антибиотиков часть болезнетворных бактерий уже имела мутантные формы, нечувствительные к ним, благодаря чему они выжили в изменившихся условиях среды. Генетическим грузом в человеческих популяциях объясняется появление до 5% потомков с генетическими дефектами. Естественный отбор элиминирует из популяции менее удачные комбинации генов и избирательно сохраняет более удачные генотипы, тем самым, изменяя частоту генов в популяциях. Интенсивность естественного отбора даже в современных человеческих популяциях довольно высокая: спонтанные аборты составляют примерно 50% всех зачатий; мертворождения — 3%; ранняя детская смертность — 2%; не вступают в брак около 20% людей; примерно 10% браков бесплодны. Таким образом, около 75% людей не вносят свой вклад в генофонд будущих поколений. Помимо естественного отбора в популяциях (в том числе и человеческих) может действовать и контротбор — это отбор неблагоприятных в обычных условиях среды признаков. Например, в странах Западной Африки частота патологического гена серповидно-клеточной анемии довольно высока, в то время как в странах умеренного климата он не встречается. Различают следующие формы отбора: 1) направленный, или движущий, отбор, способствующий непре­рывному изменению признака в определенном направлении; 2) стабилизирующий отбор, обеспечивающий сохранение средне­го значения признака (теория стабилизирующего отбора разработа­на И. И. Шмальгаузеном); 3) дизруптивный, или раскалывающий, отбор, приводящий к за­креплению крайних значений признака. Д. К. Беляев ввел также понятие дестабилизирующего отбора, который разрушает сложившиеся комплексы адаптивно важных признаков и приводит к существенному изменению генетической системы популяции. Ярким примером может служить процесс одо­машнивания животных. Генетические последствия отбора на низ­кую половую активность самцов дрозофилы также можно рассмат­ривать как пример дестабилизации. Основными факторами такой эволюции являются: 1) мутации; 2) отбор (естественный и искусственный); 3) генетико-автоматические процессы, или, по-другому, дрейф генов - процессы чисто случайных изменений концентраций аллелей или зависимых от других генетических процессов - сопряженный дрейф аллелей; 4) миграции - естественные процессы смешения популяций или искусственное скрещивание друг с другом разных пород, сортов и видов. Накопление мутантных аллелей способствует комбинативной изменчивости, приводящей к генетической гетерогенности (генетическому полиморфизму) природных популяций. Мутационный процесс обеспечивает разнообразие эволюционного материала. Изоляция – это ограничение свободы скрещивания. Она способствует дивергенции — разделению популяций на отдельные группы и изменению частот генотипов. Различают географический (горные хребты, реки, проливы и т.п.), генетический (неполноценность гибридов, различные наборы хромосом), экологический (различные экологические ниши, размножение при разных температурах) и морфофизиологический (различия в строении половых органов) типы изоляции.

65) Предмет и методология селекции. Учение об исходном материале. Центры происхождения культурных растений по Н.И. Вавилову. Понятие о породе, сорте, штамм: Сохранение генофонда ценных культурных и диких форм растений и животных. Селекция разрабатывает методы создания новых сортов раст, пород жив и штаммов микроорг с необходимыми для человека признаками. Теоретической базой этой науки является генетика. Селекция опирается на достижения молекулярной биологии, биохимии и др наук о раст, жив и микроорг. Породы жив, сорта раст, штаммы микроогр предст-тсобой совокупности особей, созданных человеком с помощью методов селекции и харак-ся определ-ми наследственными особенностями, морфологическимии физиологическими хозяйственно ценными качествами. Поскольку свой-ва живых организмов обусловленых нормой реакции на основе определенной генетической информации и подвержены модификационной и наследственной изменч-ти, развитие селекции основано на закономерностях генетики. Основные методы селекции вкл отбор, гибридизацию, полиплоидию, мутагенез, клеточная и генная инженерия. Учение об исходном материале является основой современной селекции. Исходный материал служит источником наследственной изменчивости – основы для искусственного отбора. Н.И. Вавилов установил, что на Земле существуют районы с особенно высоким уровнем генетического разнообразия культурных растений, и выделил основные центры происхождения культурных растений (первоначально Н.И. Вавилов выделил 8 центров, но затем сократил их число до 7). Для каждого центра установлены характерные для него важнейшие сельскохозяйственные культуры. 1. Тропический центр – территории Индии, Индокитая, Южного Китая и островов Юго-Восточной Азии. Из этого центра берут начало около одной трети возделываемых в настоящее время растений. Это родина таких растений, как рис, сахарный тростник, чай, лимон, апельсин, банан, баклажан, а также большого количества тропических плодовых и овощных культур. 2. Восточноазиатский центр – включает умеренные и субтропические части Центрального и Восточного Китая, Корею, Япо­нию и о. Тайвань. Около 20% всей мировой культурной флоры ведет начало из Восточной Азии. Это родина таких растений, как соя, просо, хурма, многих других овощных и плодовых культур. 3. Юго-западноазиатский центр – включает территории внутренней нагорной Малой Азии, Ирана, Афганистана, Средней Азии и Северо-Западной Индии. Родина ржи, овса, ячменя, гороха, дыни. Этот центр может быть подразделен на следующие очаги: а) Кавказский со множеством оригинальных видов пшеницы, ржи и плодовых. По пшенице и ржи это наиболее важный мировой очаг их видового происхождения; б) Переднеазиатский, включающий Малую Азию, Внутреннюю Сирию и Палестину, Транс­иорданию, Иран, Северный Афганистан и Среднюю Азию вместе с Китайским Туркеста­ном; в) Северо-западноиндийский, включающий помимо Пенджаба, Северной Индии и Кашмира также Южный Афганистан. 4. Средиземноморский центр – включает страны, расположенные по берегам Средиземного моря. Этот гео­графический центр, характеризующийся в прош­лом величайшими древнейшими цивилизациями, дал начало приблизительно около 10% видов куль­турных растений. Среди них такие, как твердые пшеницы, капуста, свекла, морковь, лен, виноград, маслина, множество других овощных и кормовых культур. 5. Абиссинский центр. Общее число видов культурных растений, связанных по своему происхождению с Абисси­нией, не превышает 4% мировой культурной флоры. Абиссиния харак­теризуется рядом эндемичных видов и даже родов культурных растений. Среди них такие, как кофейное дерево, арбуз, , своеобразное масличное растение нуг (Guizolia ahyssinica), особый вид банана. 6. Центральноамериканский центр, охватывающий обширную территорию Северной Америки, включая Южную Мексику. В этом центре можно выделить три очага: а) Горный южномексиканский, б) Центральноамериканский, в) Вест-Индский островной. Из Центральноамериканского центра ведет начало около 8% различных возделываемых рас­тений, таких, как кукуруза, подсолнечник, какао, ряд видов фасоли, тыквенных, многих плодовых (гвайява, аноны и авокадо). 7. Андийский центр, в пределах Южной Америки, приуроченный к Андийскому хребту. Это родина картофеля, томата. Отсюда ведут начало хинное дерево и кокаиновый куст. Н.И. Вавилов выделил группу вторичных культур, которые произошли от сорняков: рожь, овес и др. Н.И. Вавилов установил, что «важным моментом при оценке материала для селекции является наличие в нем разнообразия наследственных форм». Н.И. Вавилов различал следующие группы исходных сортов: местные сорта, иноземные и инорайонные сорта. При разработке теории интродукции (внедрения) инорайонных и иноземных сортов «необходимо отличать первичные очаги формообразования от вторичных». Н.И. Вавилов придавал большое значение новым гибридным формам. Разнообразие генов и генотипов в исходном материале Н.И. Вавилов назвал генетическим потенциалом исходного материала. Осваивая новые территории, прокладывая нефте- и газопроводы, следует заботиться о сохранении и восстановлении природных популяций. Популяционная генетика уже предложила свои меры, например выделение природных генетических резерватов. Они должны быть достаточно обширными, чтобы содержать основной генофонд растений и животных данного региона. Теоретический аппарат популяционный генетики позволяет определить ту минимальную численность, которая необходима для поддержания генетического состава популяции, чтобы в ней не было т.н. инбридинговой депрессии, чтобы она содержала основные генотипы, присущие данной популяции, и могла воспроизводить эти генотипы. При этом каждый регион должен иметь свои собственные природные генетические резерваты. Сказанное относится не только к растениям, но и к животным. Генофонд той или иной популяции рыб эволюционно приспособлен именно к тем условиям, в которых он обитал в течение многих поколений. Поэтому интродукция рыб из одного природного водоема в другой порой приводит к непредсказуемым последствиям. Например, попытки развести сахалинскую горбушу в Каспии оказались безуспешными, ее генофонд оказался не в состоянии «освоить» новое местообитание.

66) Закон гомологических рядов в наследственной изменчивости (Н.И. Вавилов). Значение наследственной изменчивости организмов для селекционного процесса и эволюции. В 1922 г. Н.И. Вавилов формулирует закон гомологических рядов в наследственной изменчивости, согласно которому родственные по происхождению виды растений и животных имеют сходные ряды наследственной изменчивости. Н. И. Вавилов показал, что если все известные у наиболее изученного в данной группе вида вариации расположить в определённом порядке в таблицу, то можно обнаружить и у других видов почти все те же вариации изменчивости признаков. Систематизируя учение об исходном материале, Н.И. Вавилов сформулировал закон гомологических рядов (1920 г.): 1. Виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов. Чем ближе генетически расположены в общей системе роды и виды, тем полнее сходство в рядах их изменчивости. 2. Целые семейства растений в общем характеризуются определенным циклом изменчивости, проходящей через все роды и виды, составляющие семейство. Согласно этому закону, у генетически близких видов и родов существуют близкие гены, которые дают сходные серии множественных аллелей и вариантов признака. Таким образом, закон Г. р. сводится к следующему: близкие виды благодаря большому сходству их генотипов (почти идентичные наборы генов) обладают сходной потенциальной наследственной изменчивостью (сходные мутации одинаковых генов); по мере эволюционно-филогенетического удаления изучаемых групп (таксонов), в связи с появляющимися генотипическими различиями параллелизм наследственной изменчивости становится менее полным. Следовательно, в основе параллелизмов в наследственной изменчивости лежат мутации гомологичных генов и участков генотипов у представителей различных таксонов, то есть действительно гомологичная наследственная изменчивость. Однако и в пределах одного и того же вида внешне сходные признаки могут вызываться мутациями разных генов; такие фенотипические параллельные мутации различных генов могут, конечно, возникать и у разных, но достаточно близких видов. Н. И. Вавилов подчёркивал, что закон Г. р. неизбежно оохватывает и такую, в генетическом смысле не строго гомологичную, фенотипически же параллельную изменчивость.. Он имеет огромное практическое значение в растениеводстве и селекции, а также в животноводстве. На основе этого закона растениеводы и животноводы могут целенаправленно искать и находить нужные признаки и варианты у различных видов в почти бесконечном мировом многообразии форм как культурных растений и домашних животных, так и у их диких родичей. Эти поиски, особенно среди культурных растений и их диких предков, значительно облегчаются учением Н. И. Вавилова (1926 и др.) о центрах происхождения культурных растений и его работами (1927, 1928, 1930) о географических закономерностях в распределении генов культурных растений. Закон Г. р. Н. И. Вавилова уже с 30-х гг. 20 в. явился мощным стимулятором целенаправленной селекции, создания новых сортов культурных растений и разработки научных основ интродукции и акклиматизации. Г. р. з. играет всё большую роль в изучении механизмов эволюционного процесса, в истолковании ряда биогеографических явлений и в разработке основ современной систематики низших таксонов. Для эволюции органического мира большое значение имеет наследственная изменчивость признаков организма, так как она: А – увеличивает разнообразие особей в популяции и повышает интенсивность отбора; Б – увеличивает разнообразие особей в популяции и снижает эффективность отбора; В – уменьшает разнообразие особей в популяции и ослабляет борьбу за существование; Г – увеличивает разнообразие особей в популяции и ослабляет борьбу за существование.

67) Роль частной генетики отдельных видов организмов в селекции. Использование индуцированных мутаций и комбинативной изменчивости в селекции растений, животных и микроорганизмов. Роль полиплоидии в повышении продуктивности растений. Эффективными способами получения исходного материала являются методы индуцированного мутагенеза – искусственного получения мутаций. Индуцированный мутагенез позволяет получить новые аллели, которые в природе обнаружить не удается. Например, этим путем получены высокопродуктивные штаммы микроорганизмов (продуцентов антибиотиков), карликовые сорта растений с повышенной скороспелостью и т.д. Экспериментально полученные мутации у растений и микроорганизмов используют как материал для искусственного отбора. Этим путем получены высокопродуктивные штаммы микроорганизмов (продуцентов антибиотиков), карликовые сорта растений с повышенной скороспелостью и т.д. Для получения индуцированных мутаций у растений используют физические мутагены (гамма-излучение, рентгеновское и ультрафиолетовое излучение) и специально созданные химические супермутагены (например, N-метил-N-нитрозомочевина). Обработке подвергают пыльцу, семена, проростки, почки, черенки, луковицы, клубни и другие части растений. Растения, выращенные из обработанных семян (почек, черенков и т.д.) обозначаются символом M1 (первое мутантное поколение). В M1 отбор вести трудно, поскольку большая часть мутаций рецессивна и не проявляется в фенотипе. Кроме того, наряду с мутациями часто встречаются и ненаследуемые изменения: фенокопии, тераты, морфозы. Поэтому выделение мутаций начинают в M2 (втором мутантном поколении), когда проявляется хотя бы часть рецессивных мутаций, а вероятность сохранения ненаследственных изменений снижается. Обычно отбор продолжается в течение 2…3 поколений, хотя в некоторых случаях для выбраковки ненаследуемых изменений требуется до 5…7 поколений (такие ненаследственные изменения, сохраняющиеся на протяжении нескольких поколений, называют длительными модификациями). Полученные мутантные формы или непосредственно дают начало новому сорту (например, карликовые томаты с желтыми или оранжевыми плодами) или используются в дальнейшей селекционной работе. Однако применение индуцированных мутаций в селекции все же ограничено, поскольку мутации приводят к разрушению исторически сложившихся генетических комплексов. У животных мутации практически всегда приводят к снижению жизнеспособности и/или бесплодию. К немногим исключениям относится тутовый шелкопряд, с которым велась интенсивная селекционная работа с использованием авто- и аллополиплоидов (Б.Л. Астауров, В.А. Струнников). Соматические мутации. В результате индуцированного мутагенеза часто получают частично мутантные растения (химерные организмы). В этом случае говорят о соматических (почковых) мутациях. Многие сорта плодовых растений, винограда, картофеля являются соматическими мутантами. Эти сорта сохраняют свои свойства, если их воспроизводят вегетативным путем, например, прививая обработанные мутагенами почки (черенки) в крону немутантных растений; таким путем размножают, например, бессемянные апельсины. Полиплоидия. Как известно, термин «полиплоидия» используется для обозначения самых разнообразных явлений, связанных с изменением числа хромосом в клетках. Автополиплоидия представляет собой многократное повторение в клетке одного и того хромосомного набора (генома). Автополиплоидия часто сопровождается увеличением размеров клеток, пыльцевых зерен и общих размеров организмов. Например, триплоидная осина достигает гигантских размеров, долговечна, её древесина устойчива к гниению. Среди культурных растений широко распространены как триплоиды (бананы, чай, сахарная свекла), так и тетраплоиды (рожь, клевер, гречиха, кукуруза, виноград, а также земляника, яблоня, арбузы). Некоторые полиплоидные сорта (земляника, яблоня, арбузы) представлены и триплоидами, и тетраплоидами. Автополиплоиды отличаются повышенной сахаристостью, повышенным содержанием витаминов. Положительные эффекты полиплоидии связаны с увеличением числа копий одного и того же гена в клетках, и, соответственно, в увеличении дозы (концентрации) ферментов. Как правило, автополиплоиды менее плодовиты по сравнению с диплоидами, однако снижение плодовитости обычно с лихвой компенсируется увеличением размеров плодов (яблони, груши, винограда) или повышенным содержанием определенных веществ (сахаров, витаминов). В то же время, в ряде случаев полиплоидия приводит к угнетению физиологических процессов, особенно при очень высоких уровнях плоидности. Например, 84-хромосомная пшеница менее продуктивна, чем 42-хромосомная. Аллополиплоидия – это объединение в клетке разных хромосомных наборов (геномов). Часто аллополиплоиды получают путем отдаленной гибридизации, то есть при скрещивании организмов, принадлежащих к различным видам. Такие гибриды обычно бесплодны (их образно называют «растительными мулами»), однако, удваивая число хромосом в клетках, можно восстановить их фертильность (плодовитость). Таким путем получены гибриды пшеницы и ржи (тритикале), алычи и терна, тутового и мандаринового шелкопряда. Полиплоидия в селекции используется для достижения следующих целей: получение высокопродуктивных форм, которые могут непосредственно внедряться в производство или использоваться как материал для дальнейшей селекции; восстановление плодовитости у межвидовых гибридов; перевод гаплоидных форм на диплоидный уровень. В экспериментальных условиях образование полиплоидных клеток можно вызвать воздействием экстремальных температур: низкими (0…+8 °С) или высокими (+38…+45 °С), а также путем обработки организмов или их частей (цветков, семян или проростков растений, яйцеклеток или эмбрионов животных) митозными ядами. К митозным ядам относятся: колхицин (алкалоид безвременника осеннего – известного декоративного растения), хлороформ, хлоралгидрат, винбластин, аценафтен и др. Частная селекция растений, животных и микроорганизмов. Сорт – это искусственная популяция растений или клон, прошедшие сортоиспытания и предназначенные для выращивания в определенных районах при соблюдении соответствующей агротехники. Порода – это искусственная популяция домашних животных с определенным генофондом, обладающая определенными хозяйственно-полезными признаками. Длительно сохраняемый клон микроорганизмов, характеризующийся собственными генетически устойчивыми признаками, называется штамм.

68) Системы скрещиваний в селекции растений и животных. Аутбридинг. Инбридинг. Особенности межвидовой и межродовой гибридизации: скрещиваемость, фертильность и особенности расщепления у гибридов. Пути преодоления нескрещиваемости. Работы отечественных ученых: И.В. Мичурина, Г.Д. Карпеченко и др. Скрещивание — необходимое условие для осуществления комбинативной изменчивости. Оно позволяет сочетать в потомстве ценные признаки обоих родителей и избавляться от ненужных свойств. В зависимости от степени родства родителей, выделяют несколько типов скрещивания: 1. родственное скрещивание; 2. неродственное скрещивание: а) внутрипородное (внутрисортовое), б) отдаленная гибридизация. Родственное скрещивание— это скрещивание особей, состоящих в близком родстве: родители - дети, брат — сестра. Род. скрещ. у жив. - инбридинг, в растениеводстве самоопыление растений -- инцухт. Осн. методы, применяемые в С.: отбор, гибридизация с использованием гетерозиса и цитоплазматической мужской стерильности, полиплоидия и мутагенез. Отбор (массовый и индивидуальный) составляет сущность селекц. работы и ведётся по комплексу свойств и признаков. Гибрид-ядаёт возм-ть иск-но создавать исход. материал, объединять в одном орг. свойства и признаки род. форм, испр.отд. недостатки сорта или породы. В кач-ве исх. мат. исп. ест. и гибридные популяции, самоопылённые линии, искуственные мутанты, полиплоидные формы. Эффективен подбор пар, основанный на генетике селектируемых признаков. Если известно число генов, опред. насл-ие приз., то можно предвидеть частоту появл.нужных сочет. род. приз. у гибридных растений. Подбор пар по экотипам (эколого-географический метод подбора пар), различающихся генотипически, а также хозяйственно-ценными и биол. св-ми и приз. Наилучший результат даёт скрещ. отдалённых экотипов. Исп-т ступенчатую и возвратную гибридизацию, основанную на системе повторных скрещ.; она позволяет добиться сочет.в гибридном потомстве тех ценных свойств, которые не удаётся получить при однократных скрещ. Аутбридииг — неродственные браки. Они поддерживают выс. уровень гетерозиготности. Повышение уровня гетерозиготности является одной из причин акселерации (ускорения развитияи повышения массы тела и роста людей). Инбридинг – близкородст. и родственные браки. Эти браки нежелательны, они приводят к инбредной депрессии, так как повыш. степень вероят. гетерозиготности по одному и тому же рец. патологическому гену. Напр., частота больных фенилкетонурией при неродственных браках составляет 1:15000, а при родственных — 1:7000, альбинизмом — 1:40000 и 1:3000 соответственно. Мерой генет. последствий инбридинга служит коэфф. инбридинга - это вероятность того, что у какой-либо особи в данном локусе окажутся два аллеля, идентичные по происхождению. У детей одной супружеской пары вероят. одинак.аллелей в одном локусе равна 1/2. У их детей эта вероятность становится 1/4 (1/2xl/2). При вступлении в брак двоюродных сибсов коэффициент инбридинга равен 1/16 (1/4х l/4). Различают: центростремительная селекция (естественный отбор, выражающийся в сокращении вариаций) и линейная селекция (естественный отбор в определённом направлении). Метод посредника. Применялся Мичуриным при осущ. гибридизации культ. персика с диким монгольским миндалем бобовником (в целях продвижения персика на север). Поскольку прямое скрещивание указанных форм не удавалось, Мичурин скрестил бобовник с полукультурным персиком Давида. Их гибрид скрещивался с культурным персиком, за- что и был назван посредником. Метод опыления смесью пыльцы. И. В. Мичурин применял разл. варианты смеси пыльцы. Смешивалось неболь.колич. пыльцы мат. раст. с пыльцой отцовского. В этом случае своя пыльца раздражала рыльце пестика, которое становилось способным воспринять и чужеродную пыльцу. При опылении цветков яблони пыльцой груши к последней добавляли немного пыльцы яблони. Часть семяпочек оплодот. своей пыльцой, другая часть — чужой (грушевой). Преодолевалась нескрещиваемость и при опылении цветков мат. раст.смесью пыльцы раз. видов без добавл. пыльцы своего сорта. Эфирные масла и другие секреты, выделяемые чужой пыльцой, раздражали рыльце материнского растения и способствовали ее восприятию. Мичурин широко применял разработанный им метод ментора. Для воспитания в гибридном сеянце желат. качеств сеянец прививается к раст., облад. этими качествами. Дальнейшее развитие гибрида идет под влиянием в-в, вырабат-ых растением-воспитателем (ментором); у гибрида усил. искомые качества. В данном случае в процессе развития гибридов происх. изм. свойств доминантности. Ментором может быть как подвой, так и привой. Таким способом Мичурин вывел два сорта—Кандиль-китайку и Бельфлёр-китайку. Метод ментора удобен тем, что его действие можно регулировать следующими приемами: 1) соотношением возраста ментора и гибрида; 2) продолжительностью действия ментора; 3) количественным соотношением листвы ментора и гибрида. Например, интенсивность действия ментора будет тем выше, чем старше его возраст, крона богаче листвой и чем длительнее он действует. В селекционной работе Мичурин придавал существенное значение отбору, который производился многократно и весьма жестко. Гибридные семена отбирались по их крупности и округлости: гибриды — по конфигурации и толщине листовой пластинки и черешка, форме побега, расположению боковых почек, по зимостойкости и сопротивляемости к грибковым заболеваниям, вредителям и многим другим признакам и, наконец, по качеству плода. Вегетативное сближение, метод преодоления нескрещиваемости растений при отдалённой гибридизации. В. с. заключается в том, что черенок одного растения (привой) прививают в крону другого (подвой); через неск. лет пыльца, развивающаяся в цветках привоя, приобретает способность прорастать в завязь цветков подвоя.

69) Явление гетерозиса и его генетические механизмы. Методы отбора: индивидуальный и массовый. Отбор по фенотипу и генотипу (оценка по родословной и качеству потомства). Сибселекция. Влияние условий внешней среды на эффективность отбора. Перспективные методы генетической и клеточной инженерии в селекции и биотехнологии. Гетерозис (от греч. heteroiosis — изменение, превращение), «гибридная сила», ускорение роста и увеличение размеров, повышение жизнестойкости и плодовитости гибридов первого поколения при различных скрещиваниях как животных, так и растений. Во втором и последующих поколениях гетерозис обычно затухает. Различают истинный — способность гибридов оставлять большое число плодовитых потомков, и гигантизм — увеличение всего гибридного организма или отдельных его частей. Гетерозис обнаружен у разнообразных многоклеточных животных и растений (в т. ч. и самоопылителей). У с.-х. животных и возделываемых растений нередко приводит к значительному повышению продуктивности и урожайности. Особи с сильно выраженным гетерозисом имеют преимущества при естественном отборе, и потому проявления его усиливаются, что способствует увеличению генетической изменчивости. Нередко возникают устойчивые генетические системы, обеспечивающие преимущественное выживание гетерозигот по многим генам. В основе лежит взаимодействие как аллельных, так и неаллельных генов; однако во всех случаях гетерозис связан с повышенной гетерозиготностью гибрида и его биохимическим обогащением, что и обусловливает усиление обмена веществ. Особый практический и теоретический интерес представляет проблема закрепления гетерозиса. Она может быть решена путём удвоения хромосомных наборов, создания устойчивых гетерозиготных структур и использования всех форм апомиксиса, а также вегетативного размножения гибридов, может быть закреплен и при удвоении отдельных генов или небольших участков хромосом. Отбор — второй основной метод в селекции; под ним понимают выборочное сохранение и размножение особей с ценными для человека свойствами. Поскольку он осуществляется человеком, очевидно, что это искусственный отбор. Создание генетически гетерогенных популяций растений и животных дает небольшой эффект для сельского хозяйства. Отбор, как селективное, преимущественное использование и размножение ценных для человека организмов позволяет создавать новые высокопродуктивные сорта и породы. В системе отбора различают индивидуальный и массовый отбор. Массовый отбор — отбор организмов по фенотипу (внешним признакам) без проверки генотипа. Важнейшим критерием является проявление признака в данном поколении. Преимуществом данного вида отбора являются его быстрота и массовость. Индивидуальный отбор осуществляется по генотипу, в этом случае оценивается потомство конкретного организма в ряду поколений. Он гораздо более эффективен, чем массовый отбор, хотя и требует большего времени. Индивидуальный отбор осуществляют двумя способами. Проверка по потомству. При этом способе индивидуального отбора оценивают проявление признака в ряду поколений, то есть надежность передачи потомству ценных качеств. Сибселекция (от англ. Sibling — родной брат или сестра) — отбор ведется по боковым родственникам: братьям и сестрам. Если у них наблюдают интересующие качества, то на племя оставляют остальную часть приплода. В растениеводстве эту методику используют под названием "метода половинок". В настоящий момент хромосомная инженерия связывается, прежде всего, с возможностями замещения (замены) отдельных хромосом у растений или добавления новых. Метод гаплоидов. Очень перспективен, основан на выращивании гаплоидных растений с последующим удвоением хромосом. Например, из зерен кукурузы выращивают гаплоидные растения, содержащие 10 хромосом, затем хромосомы удваивают и получают диплоидные (10 пар хромосом), полностью гомозиготные растения всего за 2-3 года вместо 6- 8-летнего инбридинга. Получение полиплоидных остатков. Также важным методом хромосомной инженерии является получение полиплоидных остатков в результате кратного увеличения хромосом.

Под генной инженерией обычно понимают искусственный перенос нужных генов от одного вида живых организмов (бактерий, животных, растений) в другой вид, часто очень далекий по своему происхождению. Чтобы осуществить перенос генов (или трансгенез), необходимо выполнить следующие сложные операции: выделение из клеток бактерий, животных или растений тех генов, которые намечены для переноса. Иногда эту операцию заменяют искусственным синтезом нужных генов, если таковой оказывается возможным;

создание специальных генетических конструкций (векторов), в составе которых намеченные гены будут внедряться в геном другого вида. Такие конструкции кроме самого гена должны содержать все необходимое для управления его работой (промоторы,терминаторы) и гены-«репортеры», которые будут сообщать, что перенос успешно осуществлен; внедрение генетических векторов сначала в клетку, а затем в геном другого вида и выращивание измененных клеток в целые организмы (регенерация). К методам прямого переноса чужеродной ДНК в протопласты растений и животных относится электропарация: кратковременные электрические разряды (1—100 мкс при напряженности поля 1000—10000 В/см2) увеличивают проницаемость мембран протопластов, куда и проникает находящееся в растворе ДНК. Более широкое практическое применение в настоящее время получило другое важнейшее направление современной биотехнологии — клеточная селекция как метод создания новых форм растений путем выделения мутантных клеток и сомаклональных вариаций в селективных условиях. Клеточная селекция является как бы развитием мутационной селекции, но реализуется на уровне единичных клеток с использованием техники in vitro, что придает ей, с одной стороны, более широкие возможности, а с другой стороны — создает значительные трудности из-за необходимости регенерации из отдельных клеток полноценных. Преимущество клеточной селекции перед традиционными методами состоит в отсутствии сезонности в работе, возможности использования миллионов клеток при отборе, направленности селекции путем применения селективных сред и выполнении работ в лабораторных условиях.

70) Особенности человека как объекта генетических исследований. Методы изучения генетики человека. Изучение структуры и активности генома человека с помощью методов молекулярной генетики. Программа «Геном Человека». Основные закономерности наследственности, установленные для живых организмов, универсальны и в полной мере справедливы и для человека. Вместе с тем как объект генетических исследований человек имеет свои преимущества и недостатки. 1. Для людей невозможно планировать искусственные браки. Однако эта трудность преодолима благодаря прицельной выборке из большого числа брачных пар тех, которые соответствуют целям данного генетического исследования. 2. большое число хромосом 2п=46 в значительной мере затрудняет возможности генетического анализа человека. 3. Из-за небольшого числа потомков невозможен анализ расщепления в потомстве одной семьи. Однако в больших популяциях можно выбрать семьи с интересующими исследователя признаками. Кроме того, в некоторых семьях определенные признаки прослежены на протяжении многих поколений. 4. длительность смены поколений у человека. Одно поколение у человека занимает в среднем 30 лет. И, следовательно, генетик не может наблюдать более одного-двух поколений. 5. Для человека характерен большой генотипический и фенотипический полиморфизм. Проявление многих признаков и болезней в сильной степени зависят от условий внешней среды. Следует отметить, что понятие "среда" для человека более широкое по сравнению с растениями и животными. Наряду с питанием, климатом и другими абиотическими и биотическими факторами, средой для человека являются и социальные факторы, трудно изменяемые по желанию исследователя. Вместе с тем, человека как генетический объект широко изучают врачи всех специальностей, что нередко помогает установить различные наследственные отклонения. Генеалогический метод опирается на генеалогию — учение о родословных. Его сутью является составление родословной и последующий ее анализ. Генеалогический метод позволяет выявить наследственный характер признака и определить тип наследования, дает возможность установить сцепленное наследование, определить тип взаимодействия генов и пенетрантность аллелей. Близнецовый метод Это метод изучения генетических закономерностей на близнецах. Впервые он был предложен Ф. Гальтоном в 1875 г. Близнецовый метод дает возможность определить вклад генетических (наследственных) и средовых факторов (климат, питание, обучение, воспитание и др.) в развитии конкретных признаков или заболеваний у человека. Мутационный метод - выявление эффекта мутации, оценка мутагенной опасности отдельных факторов и окружающей среды. Поиск неизвестных мутаций и выявление известных мутаций - это разные диагностические задачи. Крупные мутации легче обнаружить. Блоттинг по Саузерну и полимеразная цепная реакция позволяют выявить увеличение числа тринуклеотидных повторов, делеции, вставки и другие перестройки ДНК. Также мутационный метод позволяет выявить любую мутацию, существенно снижающую уровень мРНК. Популяционно-статистический метод изучает генетическую структуру популяций, их генофонд, взаимодействие факторов, обусловливающих постоянство и изменение генетической структуры популяций. Под популяцией в генетике понимается совокупность свободно скрещивающихся особей одного вида, занимающих определенный ареал и обладающих общим генофондом в ряду поколений. (Генофонд — это вся совокупность генов, встречающихся у особей данной популяции).В медицинской генетике популяционно-статистический метод используется при изучении наследственных болезней населения, частоты нормальных и патологических генов, генотипов и фенотипов в популяциях различных местностей, стран и городов. Цитогенетический методоснова метода — микроскопическое изучение хромосом человека. Цитогенетические исследования стали широко использоваться с начала 20-х гг. ХХ в. для изучения морфологии хромосом человека, подсчета хромосом, культивирования лейкоцитов для получения метафазных пластинок. В настоящее время цитогенетический метод применяется для диагностики хромосомных болезней, составления генетических карт хромосом, изучения мутационного процесса и других проблем генетики человека. Метод генетики соматических клеток Основу метода составляет культивирование отдельных соматических клеток человека и получение из них клонов, а так же их гибридизацию и селекцию.С помощью метода гибридизации соматических клеток: а) изучают метаболические процессы в клетке; б) выявляют локализацию генов в хромосомах; в) исследуют генные мутации; г) изучают мутагенную и канцерогенную активность химических веществ. Биохимический метод Причиной многих врожденных нарушений метаболизма являются различные дефекты ферментов, возникающие вследствие изменяющих их структуру мутаций. Предметом современной биохимической диагностики являются специфические метаболиты, различные белки. Молекулярно-генетические методы Конечный итог молекулярно-генетических методов — выявление изменений в определенных участках ДНК, гена или хромосомы. Проект по расшифровке генома человека — международный научно-исследовательский проект, главной целью которого было определить последовательность нуклеотидов, которые составляют ДНК и идентифицировать 20–25 тыс. генов в человеческом геноме.Проект начался в 1990 году, под руководством Джеймса Уотсона. В 2000 году был выпущен рабочий черновик структуры генома, полный геном — в 2003 году, однако и сегодня дополнительный анализ некоторых участков ещё не закончен. Геном был разбит на небольшие участки, примерно по 150 000 пар нуклеотидов в длину. Эти куски затем встраивали в вектор, известный как Искусственная бактериальная хромосома (англ.) или BAC. Эти векторы созданы из бактериальных хромосом, измененных методами генной инженерии. Векторы, содержащие гены, затем можно вставлять в бактерии, где они копируются бактериальными механизмами репликации. Каждый из кусочков генома потом секвенировали раздельно методом дробовика, и затем все полученные последовательности собирали воедино уже в виде компьютерного текста. Размеры полученных больших кусков ДНК, собираемых для воссоздания структуры целой хромосомы, составляли около 150 000 пар нуклеотидов. Работа над интерпретацией данных генома находится всё ещё в своей начальной стадии. Ожидается, что детальное знание человеческого генома откроет новые пути к успехам в медицине и биотехнологии.

71) Врожденные и наследственные болезни, их распространение в человеческих популяциях. Хромосомные и генные болезни. Болезни с наследственной предрасположенностью. Скрининг генных дефектов. Использование биохимических методов для выявления гетерозиготных носителей и диагностики наследственных заболеваний. Все наследственные болезни делятся на три группы: 1. Генные (моногенные — в основе патологии одна пара аллельных генов). 2. Хромосомные. 3. Болезни с наследственным предрасположением (мультифакториальные). Генные болезни— это большая группа заболеваний, возникающих в результате повреждения ДНК на уровне гена. Моногенные формы генных заболеваний наследуются в соответствии с законами Г. Менделя. По типу наследования они делятся на аутосомно-доминантные, аутосомно-рецессивные и сцепленные с Х- или У-хромосомами. Особенностью генных (как и вообще всех наследственных) болезней является их гетерогенность. Это означает, что одно и то же фенотипическое проявление болезни может быть обусловлено мутациями в разных генах или разными мутациями внутри одного гена. К генным болезням у человека относятся многочисленные болезни обмена веществ. К хромосомным относятся болезни, обусловленные геномными мутациями или структурными изменениями отдельных хромосом. Хромосомные болезни возникают в результате мутаций в половых клетках одного из родителей. Из поколения в поколение передаются не более 3-5 % из них. Все хромосомные болезни принято делить на две группы. 1. Связанные с аномалиями числа хромосом -Болезни, обусловленные нарушением числа аутосом или, связанные с увеличением или уменьшением числа половых Х- и Y-хромосом. 2. Связанные со структурными нарушениями (аберрациями) хромосомВ настоящее время у человека известно более 700 таких заболеваний, вызванных структурными нарушениями хромосом. Синдром Дауна (трисомия по 21-й хромосоме).Данное заболевание относится к числу наиболее распространенных патологий человека. Лежащее в основе синдрома Дауна нерасхождение 21-й пары хромосом происходит либо в яйцеклетке во время мейоза, либо на ранних стадиях дробления зиготы. Синдром Шерешевского-Тернеравпервые описан Н.А. Шерешевским в 1925 г., а позднее, в 1938 г. Х.Х. Тернером. Причиной болезни является нарушение расхождения половых хромосом. Болеют только женщины, у них отсутствует одна Х-хромосома (45 Х0).В 50 % случаев больные страдают умственной отсталостью, они пассивны, склонны к психогенным реакциям и психозам. Болезни, причиной которых является полиплодияПолиплодия - связана с кратным увеличением гаплоидного набора хромосом. Причиной образования полиплоидов является нарушение процесса мейоза вследствие мутации. В результате дочерняя половая клетка получает вместо гаплоидного (23) диполидный (46) набор хромосом, т.е. 69 хромосом (у мужчин кариотип 69, XYY, у женщин — 69, ХХХ). Рождение детей с полиплоидией наблюдается очень редко. Около 22,6% всех спонтанных абортов обусловлены полиплоидей. Следует отметить, что триплодия встречается в три раза чаще по сравнению с тетраплоидией. Основными пороками развития являются: расщелина губы и неба, низко расположенные ушные раковины, сращение соседних пальцев кисти или стопы, аномалии в развитии всех внутренних органов и др.Факторы, повышающие риск рождения детей с хромосомными болезнямиИмеются экспериментальные данные о влиянии на мутационный процесс таких факторов, как: действие ионизирующих излучении, химических веществ, вирусов. Другими причинами нерасхождения хромосом могут быть: сезонность, возраст отца и матери, порядок рождения детей, прием лекарств во время беременности, гормональные нарушения, алкоголизм и др. Не исключается до определенной степени и генетическое детерминирование нерасхождения хромосом.

Скрининг Генетический - скрининг-тесты, позволяющие выявить людей, которые по своему генотипу склонны к развитию определенных заболеваний (см. также Mouthwash тест). Эти заболевания могут развиться у таких людей со временем или передаться от них по наследству их детям (см. Носитель). Недавно такие тесты стали применяться для установления пола будущего ребенка, чтобы родители смогли выбирать пол своих детей; однако это вызвало значительные дискуссии в широких общественных кругах. Биохимический метод. Причиной многих врожденных нарушений метаболизма являются различные дефекты ферментов, возникающие вследствие изменяющих их структуру мутаций. Предметом современной биохимической диагностики являются специфические метаболиты, различные белки. Биохимические методы применяются и для диагностики гетерозиготных состояний у взрослых. Известно, что среди здоровых людей всегда имеется большое число так называемых носителей патологического гена (гетерозиготное носительство). Понятно, что если в брак вступают гетерозиготные носители какого-либо заболевания, то риск рождения больного ребенка в такой семье составит 25%. Выявление гетерозиготных носителей того или иного заболевания возможно путем использования биохимических тестов (прием фенилаланина для выявления фенилкетонурии, прием сахара — сахарного диабета и.т.д.), микроскопического исследования клеток крови и тканей, определения активности фермента, измененного в результата мутации. Известно, что заболевания, в основе которых лежит нарушение обмена веществ, составляют значительную часть наследственной патологии (фенилкетонурия, галактоземия, алкаптонурия, альбинизм и др.). Так, гетерозиготные носители фенилкетонурии реагируют на введение фенилаланина более сильным повышением содержания аминокислоты в плазме, чем нормальные гoмозиготы (болезнь обусловлена рецессивным аллелем). Биохимический метод широко применяется в медико-генетическом консультировании для определения риска рождения больного ребенка. Успехи в области биохимической генетики способствуют более широкому внедрению диагностики гетерозиготного носительства в практику.

Причины возникновения наследственных и врожденных заболеваний. Генетическая опасность радиации и химических веществ. Генотоксикология. Перспективы лечения наследственных болезней. Задачи медико-генетических консультаций.

Роль генетических и социальных факторов в эволюции человека Наследственные болезни — это патологические состояния, в основе которых изменение наследствен­ного материала (т.е. мутация). В развитии таких заболеваний главную роль играют нарушения в структуре гена или хромосомы. Кроме того, к на­следственной патологии относят также болезни с на­следственной предрасположенностью — мулътифакториалъные заболевания. Они возникают как ре­зультат совместного действия факторов внешней сре­ды и специфического набора генов, который создает условия, способствующие развитию патологическо­го процесса.

Все наследственные болезни делятся на три группы: 1. Генные (моногенные — в основе патологии одна пара аллельных генов) 2. Хромосомные 3. Болезни с наследственным предрасположением (мультифакториальные). Генные болезни — это большая группа заболеваний, возникающих в результате повреждения ДНК на уровне гена. Общая частота генных болезней в популяции составляет 1-2%. Моногенные формы генных заболеваний наследуются в соответствии с законами Г. Менделя. По типу наследования они делятся на аутосомно-доминантные, аутосомно-рецессивные и сцепленные с Х- или У-хромосомами. Большинство генных патологий обусловлено мутациями в структурных генах, осуществляющих свою функцию через синтез полипептидов — белков. Любая мутация гена ведет к изменению структуры или количества белка.

Начало любой генной болезни связано с первичным эффектом мутантного аллеля. Основная схема генных болезней включает ряд звеньев: мутантный аллель → измененный первичный продукт → цепь последующих биохимических процессов клетки → органы → организм. В результате мутации гена на молекулярном уровне возможны следующие варианты: 1) синтез аномального белка; 2) выработка избыточного количества генного продукта; 3) отсутствие выработки первичного продукта; 4) выработка уменьшенного количества нормального первичного продукта.

Особенностью генных (как и вообще всех наследственных) болезней является их гетерогенность. Это означает, что одно и то же фенотипическое проявление болезни может быть обусловлено мутациями в разных генах или разными мутациями внутри одного гена. К генным болезням у человека относятся многочисленные болезни обмена веществ. Они могут быть связаны с нарушением обмена углеводов, липидов, стероидов, пуринов и пиримидинов, билирубина, металлов и др. Пока еще нет единой классификации наследственных болезней обмена веществ.

К хромосомным относятся болезни, обусловленные геномными мутациями или структурными изменениями отдельных хромосом. Хромосомные болезни возникают в результате мутаций в половых клетках одного из родителей. Из поколения в поколение передаются не более 3-5 % ' из них. Хромосомными нарушениями обусловлены примерно 50 % спонтанных абортов и 7 % всех мертворождений. По данным i987 г. из 1000 новорожденных 7 имели различные хромосомные аномалии. Все хромосомные болезни принято делить на две группы. 1. Связанные с аномалиями числа хромосом -Болезни, обусловленные нарушением числа аутосом или, связанные с увеличением или уменьшением числа половых Х- и Y-хромосом. 2. Связанные со структурными нарушениями (аберрациями) хромосом.В настоящее время у человека известно более 700 таких заболеваний, вызванных структурными нарушениями хромосом. Имеющиеся данные показывают, что около 25% приходится на аутосомные трисомии, 46% — на патологию половых хромосом. Структурные перестройки составляют 10,4%. Среди хромосомных перестроек наиболее часто встречаются транслокации и делеции. Врожденные заболевания развиваются из-за нарушения внутриутробного развития плода под воздействием внешних повреждающих факторов.

К абиотическим факторам любой экосистемы относятся ионизирующее излучение и загрязняющие вещества. Токсичность и мутагенность среды — это два взаимосвязанных понятия. Одни и те же факторы среды могут оказывать и токсичное, и мутагенное действие. Токсичное действие проявляется вскоре после контакта с фактором, не более чем через месяц. Оно может выражаться в виде аллергии, ослабления иммунной системы, отравления, развития неврозов, возникновения неизвестных ранее патологий. Гораздо чаще токсичность среды проявляется в виде устойчивых отклонений от нормального физиологического состояния организма у большого количества людей, которые заняты на вредном производстве или живут в прилегающих к предприятию районах. Загрязняющие вещества чаще всего — это отходы производства и автомобильного транспорта: сернистый ангидрид, оксиды азота и углерода, углеводороды, соединения меди, цинка, ртути, свинца. Загрязняющими веществами также могут быть химические соединения, созданные человеком, например пестициды, используемые для борьбы с вредителями сельскохозяйственных культур. Мутагенность окружающей среды никогда не проявляется сразу после контакта с фактором. Опасность мутагенов для человека состоит в том, что их многократное и длительное контактное действие приводит к возникновению мутаций - стойких изменений в генетическом материале. С накоплением мутаций клетка приобретает способность к бесконечному делению и может стать основой развития онкологического заболевания (раковой опухоли).

Возникновение мутаций — процесс длительный и сложный, поскольку в клетках имеется надежная защитная система, которая противостоит мутационному процессу. Развитие мутации зависит от дозы мутагена и длительности его действия, а также от того, насколько часто мутаген действует на организм, т.е от ритма его действия. Процесс развития мутаций может быть растянут на годы. Генотоксикология изучает выявления мутагенного эффекта самых различных факторов (как индивидуальных загрязнителей, так и суммарной мутагенной активности природных тел).Основная цель медико-генетического консультирования — предупреждение рождения больного ребенка. Главными задачами МГК являются: 1. Установление точного диагноза наследственной патологии. 2. Пренатальная (дородовая) диагностика врожденных и наследственных заболеваний различными методами (ультразвуковыми, цитогенетическими, биохимическими, молекулярно-генетическими). 3. Определение типа наследования заболевания. 4. Оценка величины риска рождения больного ребенка и оказание помощи в принятии решения. 5. Пропаганда медико-генетических знаний среди врачей и населения. Поводом для медико-генетического консультирования могут быть: 1. Рождение ребенка с врожденными пороками развития, умственной и физической отсталостью, слепотой и глухотой, судорогами и др. 2. Спонтанные аборты, выкидыши, мертворождения. 3. Близкородственные браки. 4. Неблагополучное течение беременности. 5. Работа супругов на вредном предприятии. 6. Несовместимость супружеских пар по резус-фактору крови. 7. Возраст женщины старше 35 лет, а мужчины — 40 лет. Медико-генетическая консультация включает 4 этапа: диагноз, прогноз, заключение и совет.Работа начинается с уточнения диагноза заболевания. Точный диагноз - необходимое условие для любой консультации. В медико-генетических консультациях диагноз уточняется благодаря использованию современных генетических, биохимических, иммуногенетических и других методов. Одним из основных методов является генеалогический метод. В первую очередь это относится к тому из супругов, в родословной которого имелась наследственная патология. Тщательный сбор родословной дает определенную информацию для постановки диагноза болезни. После установления диагноза определяется прогноз для потомства, т.е. величина повторного риска рождения больного ребенка. В настоящее время некоторые наследственные заболевания устанавливаются с помощью ДНК-диагностики. Гетерозиготным носителям дефектных генов следует избегать близкородственных браков, заметно увеличивающих риск рождения детей с наследственной патологией. Заключение медико-генетического консультирования и советы родителям (два последних этапа) могут быть объединены. В результате проведенных генетических исследований врач-генетик дает заключение об имеющейся болезни, знакомит с вероятностью возникновения болезни в будущем, дает соответствующие рекомендации. При этом учитывается не только величина риска появления больного ребенка, но и тяжесть наследственного или врожденного заболевания, возможности пренатальной диагностики и эффективности лечения. Вместе с тем, все решения по дальнейшему планированию семьи принимаются только супругами. Проявление многих признаков и болезней в сильной степени зависят от условий внешней среды. Следует отметить, что понятие "среда" для человека более широкое по сравнению с растениями и животными. Наряду с питанием, климатом и другими абиотическими и биотическими факторами, средой для человека являются и социальные факторы, трудно изменяемые по желанию исследователя. Вместе с тем, человека как генетический объект широко изучают врачи всех специальностей, что нередко помогает установить различные наследственные отклонения. В настоящее время интерес и внимание к изучению генетики человека активно возрастают. Так, глобальная международная программа Геном человека" имеет своей задачей изучение генома человека на молекулярном уровне. Для ее решения используются все новейшие современные методы генетики и медицины.

 

– Конец работы –

Используемые теги: понятия, ген, Генотип, фенотип, Фенотипическая, генотипическая, изменчивость, мутации0.093

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Понятия; ген, генотип и фенотип. Фенотипическая и генотипическая изменчивость, мутации

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Изменчивость, ее формы и значение Изменчивость - это способность организма приобретать новые признаки в процессе онтогенеза. Различают наследственную и ненаследственную изменчивость. Ненаследственная или модификационная изменчивость не затрагивает насле
Одни признаки (например, молочность, вес) могут обладать широкой нормой реакции, другие (окраска шерсти)— узкой. Таким образом, организмом… Варианта — это единичное выражение развития признака. Размах вариаций и… Виды наследственной изменчивости: • Наследственность - это свойство живых организмов сохранять и передавать признаки в…

Генетика и теория эволюции Мутации составляют основу наследственной изменчивости. Особи с различными мутациями, скрещиваясь между собой, обретают новые сочетания генов. Мутационная изменчивость дает первичный материал для естественного отбора, ведущего
Закон справедлив при соблюдении следующих условий: популяция должна быть достаточно велика, чтобы обеспечить случайное сочетание генов; должен… Природные популяции при их относительной фенотипической однородности (насыщены… Различают несколько форм отбора. Движущий отбор - такая форма, при которой действие отбора направлено в определенную…

Обычно понятия данные и информация считают синонимичными. Необходимо, однако, помнить, что эти понятия имеют разный смысл
В любой АИС информация хранится в ЭВМ и обрабатывается с помощью ЭВМ ЭВМ... Пользователями АИС являются люди пользующиеся услугами системы Приложение это программа или иначе прикладная...

Основные понятия генетики наследственность, наследование, доминантность, рецессивность, аллельные гены, гомо- и гетерозиготность
Генетика наука о законах наследственности и изменчивости организмов и методах управления ими... Наследственность свойство организмов обеспечивать материальную и... Наследование передача генетической информации генетических признаков от одного поколения организмов к другому...

Вклады генотипических и средовых факторов в метамерную изменчивость листа винограда
Ключевые слова ВИНОГРАД, СЕЛЕКЦИЯ, МЕТАМЕРНАЯ ИЗМЕНЧИВОСТЬ, КОМПЛЕКС ПРИЗНАКОВ ЛИСТА, ДИСПЕРСИОННЫЙ АНАЛИЗ. Цель исследования изучение метамерной… Оценка метамерной изменчивости с использованием коэффициента вариации,… Естественно, что при сравнительной оценке растений в пределах клона основное внимание уделяется признакам,…

Написать типы гамет, образующихся у организма с генотипом АаВbСс. Гены А, В и С наследуются независимо
Ответ... Тригетерозигота АаВbСс будет образовывать типов гамет АВС аbс аВС Аbс... Короткопалость близорукость и альбинизм кодируются рецессивными генами расположенными в разных хромосомах...

Содержание и объём понятия. Закон обратного отношения между объёмами и содержаниями понятий
Под объемом понятия “животное” мыслится класс всех животных, которые существуют сейчас, существовали ранее и будут существовать в будущем. Класс… Например, объем понятия “ моторная лодка” целиком входит в объем другого,… На основе обобщения такого рода примеров можно сформулировать следующий закон: чем шире объем понятия, тол уже его…

Основные понятия в SWOT анализе
SWOT анализ является аббревиатурой следующих составляющих... S Strengths сильные стороны товара или услуги Такие внутренние... Значение сильных сторон для компании в стратегическом планировании за счет сильных сторон компания может увеличивать...

Тема 1. Основные понятия
Введение... Многочисленные определения статистики как науки о количественной характеристике общественных и естественных явлений и...

Лекция № 1-2 Тема лекции: Введение. Основные понятия и законы химии
Тема лекции Введение Основные понятия и законы химии... План лекции Предмет задачи и методы химии...

0.028
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам