рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Доказательства генетической роли нуклеиновых кислот (трансформация у бактерий, опыты с вирусами). Структура ДНК и РНК. Модель ДНК Уотсона и Крика.

Доказательства генетической роли нуклеиновых кислот (трансформация у бактерий, опыты с вирусами). Структура ДНК и РНК. Модель ДНК Уотсона и Крика. - раздел Биология, Понятия; ген, генотип и фенотип. Фенотипическая и генотипическая изменчивость, мутации Первый Успех В Молекулярной Генетике Был Достигнут При Изучении Генетической ...

Первый успех в молекулярной генетике был достигнут при изучении генетической трансформации у бактерий. Трансформация в генетике, внесение в клетку генетической информации при помощи изолированной дезоксирибонуклеиновой кислоты (ДНК). Трансформация приводит к появлению у трансформированной клетки (трансформанта) и её потомства новых признаков, характерных для объекта — источника ДНК. Явление трансформации было открыто в 1928 английским учёным Ф. Гриффитом, наблюдавшим наследуемое восстановление синтеза капсульного полисахарида у пневмококков при заражении мышей смесью убитых нагреванием капсулированных бактерий и клеток, лишённых капсулы. Организм мыши в этих экспериментах играл роль своеобразного детектора, так как приобретение капсульного полисахарида сообщало клеткам, лишённым капсулы, способность вызывать смертельный для животного инфекционный процесс. Помимо пневмококков, трансформация обнаружена и изучена на некоторых других бактериях. Использование в экспериментах легко учитываемых генетических признаков (например, устойчивость к действию клеточных ядов, потребность в определённых факторах роста), а также применение ДНК с радиоизотопной меткой позволили дать Трансформация количественную оценку. Трансформация у бактерий рассматривают как сложный процесс, включающий следующие стадии: фиксация молекул ДНК клеткой-реципиентом; проникновение ДНК внутрь клетки; включение фрагментов трансформирующей ДНК в хромосому клетки-хозяина; формирование «чистых» трансформированных вариантов. Фиксация ДНК происходит на особых участках клеточной поверхности (рецепторах), число которых ограничено. Связанная с рецепторами ДНК сохраняет чувствительность к действию добавленного в среду фермента дезоксирибонуклеазы, вызывающего её распад. Однако, спустя очень короткий срок (в пределах 1 мин) после фиксации, часть ДНК проникает в клетку. Бактериальные клетки одного и того же штамма резко различаются по проницаемости для ДНК. Клетки данной бактериальной популяции, способные включать чужеродную ДНК, называются компетентными. Число компетентных клеток в популяции незначительно и зависит от генетических особенностей бактерий и фазы роста бактериальной культуры. Развитие компетенции связывают с синтезом особого белка, обеспечивающего проникновение ДНК в клетку. В 1944 американский учёный О. Т. Эйвери с сотрудниками обнаружил, что наследственные признаки одного штамма пневмококков могут быть переданы другому, генетически отличному штамму путём введения в его клетки дезоксирибонуклеиновой кислоты (ДНК), выделенной из первого штамма. Впоследствии подобная генетическая трансформация с помощью ДНК была осуществлена у других бактерий, а в последнее время — и у некоторых многоклеточных организмов (цветковые растения, насекомые). Было показано, что гены состоят из ДНК. Этот вывод был подтвержден опытами с ДНК-содержащими вирусами: для размножения вируса достаточно введения молекул вирусной ДНК в клетку восприимчивого хозяина; все др. компоненты вируса (белки, липиды) лишены инфекционных свойств и генетически инертны. Аналогичные опыты с вирусами, содержащими вместо ДНК рибонуклеиновую кислоту (РНК), показали, что у таких вирусов гены состоят из РНК. Выяснение генетической роли ДНК и РНК послужило мощным стимулом для изучения нуклеиновых кислот биохимическими, физико-химическими и рентгеноструктурными методами. Составными частями нуклеиновых кислот являются нуклеотиды. Молекула нуклеотида состоит из пентозы, азотистого основания и фосфорной кислоты. В зависимости от типа сахара различают рибонуклеиновую кислоту (РНК; в её состав входит рибоза) и дезоксирибонуклеиновая кислота (ДНК; в её состав входит сахар дезоксирибоза, у которого на один атом кислорода меньше). В обоих типах нуклеиновых кислот содержатся четыре типа оснований: аденин (А), гуанин (Г), цитозин (Ц), тимин (Т), который в РНК заменен на урацил (У). Первые два основания относятся к классу пуринов, остальные – к пиримидинам. Фосфорная кислота определяет кислотные свойства нуклеиновых кислот. Выяснить структуру ДНК удалось в 1953 году английским ученым Д. Уотсону и Ф. Крику. Они создали модель трехмерной двухспиральной структуры молекулы ДНК. Эта модель отвечала всем основным требованиям, необходимым генетическому материалу для выполнения биологических функций. Химическая структура гена, связанная с линейным расположением нуклеотидов в цепи, позволяла сохранять закодированную с помощью генетического кода наследственную информацию. Благодаря комплементарному связыванию двух цепей молекула ДНК способна к репликации, что позволяет точно копировать генетическую информацию и поддерживать наследственное постоянство при делении клеток (митоз, мейоз). На основе матричного синтеза генетическая информация может переписываться на посреднические молекулы иРНК (транскрипция). Информация о последовательностях нуклеотидов в иРНК переводится на рибосомах в последовательность аминокислот в полипептиде в процессе трансляции. Модель двойной спирали ДНК и триплетности генетического кода позволила предсказать молекулярные механизмы возникновения спонтанных и индуцированных генных мутаций: во-первых, замена основания в одном кодоне приводит к изменению одной аминокислоты в белке; во-вторых, вставка или выпадение одного нуклеотида в одной цепи ДНК приводит к изменению всех последующих кодонов и отсутствию синтеза специфического белка, кодируемого соответствующим геном. Последствия такой мутации в гене могут быть губительными для клетки и целого организма. После доказательства генетической роли нуклеиновых кислот и расшифровки структуры молекулы ДНК С. Бензер в экспериментах на бактериофаге Т4 показал, что наименьшими мутирующими элементами гена являются отдельные пары нуклеотидов, и кроссинговер может происходить между двумя парами нуклеотидов. Было окончательно постулировано, что ген представляет собой определенный участок ДНК, состоящий из нескольких тысяч пар нуклеотидов, способных мутировать и быть разделенными рекомбинацией, но функционально представляющий единое целое.

– Конец работы –

Эта тема принадлежит разделу:

Понятия; ген, генотип и фенотип. Фенотипическая и генотипическая изменчивость, мутации

Генетика наука изучающая закономерности и материальные основы наследственности и изменчивости организмов а также механизмы эволюции живого... Доказательства роли ядра и хромосом в явл насл ти... Функции нуклеиновых кислот в реализации генетической информации репликация транскрипция и трансляция...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Доказательства генетической роли нуклеиновых кислот (трансформация у бактерий, опыты с вирусами). Структура ДНК и РНК. Модель ДНК Уотсона и Крика.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Понятия; ген, генотип и фенотип. Фенотипическая и генотипическая изменчивость, мутации.
Ген - это участок молекулы ДНК, дающий информацию о синтезе определенного полипептида или нуклеиновой кислоты. Набор генов организма, которые он получает от своих родителей, называется генотипом, а

Доказательства роли ядра и хромосом в явл. насл-ти. Роль ц/п факторов в передаче насл. инф.
Первым фактом, раскрывающим роль хромосом в насл., было доказ-во роли хромосом в определении пола у животных и открытие механизма расщепления по полу 1:1. Морган проводил свои опыты на плодовых муш

Деление клетки и воспроизведение. Генетическая роль митоза и мейоза.
Клеточный цикл – 4 периода: пресинтетический (G1) – в это время клетка интенсивно растет, увеличивая количество митохондрий и рибосом, в ядре клетки набор генетического материала = 2n2с, период син

Кариотип. Парность хромосом в соматических клетках. Гомологичные хромосомы. Специфичность морфологии и числа хромосом.
Кариотип – хромосомный комплекс вида со всеми его особенностями: число и размерами хромосом, их морфологией, наличием видимых под световым микроскопом деталей строения, перетяжек, спутников, соотно

Молекулярные основы насл-ти. 1 ген-1 полипептид. Белок как элем-ый признак.
Материальным носителем наследственности является молекула дезоксирибонуклеиновой кислоты (ДНК). Молекула ДНК состоит из двух нитей, закрученных друг относительно друга. Каждая из цепочек образована

Свойства генетического кода. Доказательства триплетности кода. Расшифровка кодонов.
Ген. код – единая система записи наслед-ой инф-ции в мол-ах нуклеиновых кислот в виде послед-сти нуклеотидов. Св-ва ген.кода: 1)триплетность кода(одной аминокислоте в полипептидной цепочке соотв-ет

Процесс удвоения хромосом называют репликацией (редупликацией).
Хромосома содержит одну непрерывную двухцепочечную молекулу ДНК. При репликации каждая цепь родительской двухцепочечной ДНК служит матрицей для синтеза новой комплементарной цепи. Вновь образованна

Закономерности наследования при моногибридном скрещивании, открытые Г. Менделем. Факториальная гипотеза Г. Менделя. Закон "чистоты гамет".
Мендель открыл закономерности наследования, проводя гибридизацию различных сортов гороха. Гибридизация - это скрещивание особей с различными генотипами. Скрещивание, при котором у родительских особ

Отклонения от менделевских расщеплений при ди- и полигенном контроле признаков. Неаллельные взаимодействия: комплементарность, эпистаз, полимерия.
При рассмотрении двух или более независимых признаков гены, определяющие различные признаки, наследуются независимо друг от друга (справедливо только в отношении генов, находящихся в разных хромосо

Биохимические основы неаллельных взаимодействий. Плейотропное действие генов. Пенентрантность и экспрессивность.
Гены, распол. в раз. локусах, как на одной, так и разных хромосомах, называются неаллельными, их взаимодействие называется межаллельным. Различают следующие его виды: комплиментарность, эпистаз и п

Половые хромосомы, гомо- и гетерогаметный пол; типы хромосомного определения пола. Наследование признаков, сцепленных с полом.
Хромосомная теория показала, в чем состоит внутренний механизм детерминации пола и почему в природе в большинстве случаев рождается половина особей мужского и половина особей женского пола. Пол – э

Значение реципрокных скрещиваний для изучения сцепленных с полом признаков. Балансовая теория определения пола. Гинандроморфизм.
Признаки, развитие которых обусловлено генами, распол. в одной из половых хр., наз.сцепленными с половыми хромосомами (гоносомное наследование). Х-хромосома по своим размерам знач-но больше Y-хромо

Значение работ школы Т. Моргана в изучении сцепленного наследования признаков. Особенности наследования при сцеплении. Группы сцепления.
Хромосомная теория наследственности Моргана, объясняя закономерности наследования признаков у животных и растительных организмов, играет важную роль в сельскохозяйственной науке и практике. Она воо

Цитологические доказательства кроссинговера. Множественные перекресты. Интерференция. Линейное расположение генов в хромосомах.
Цитологическое доказательство кроссинговера. После того как генетическими методами удалось установить явление кроссинговера, необходимо было получить прямое доказательство обмена участками гомологи

Материнский эффект цитоплазмы. Наследование завитка у моллюсков. Пластидная наследственность. Наследование пестролистности у растений.
Материнский эффект цитоплазмы заключается во влиянии генотипа матери на характер потомства первого поколения, передаваемый через свойства цитоплазмы яйцеклеток. В результате потомство развивается в

Комбинативная изменчивость, механизм ее возникновения, роль в эволюции и селекции. Геномные изменения: полиплоидия, анеуплоидия.
Комбинативная изменчивость — изменчивость, которая возникает вследствие рекомбинации генов во время слияния гамет. Она обусловлена перекомбинацией генов родителей, без изменения структуры генетичес

Представление школы Моргана о строении и функции гена. Функциональный и рекомбинационный критерии аллелизма. Множественный аллелизм.
В 1902 г. У. Сеттон, а впоследствии Т. Морган сопоставили менделевские законы наследственности с закономерностями поведения хромосом и обнаружили параллелизм между характером наследования генов и р

Работы школы Серебровского по ступенчатому аллелизму. Псевдоаллелизм. Функциональный тест на аллелизм (цис-транс тест).
В 1929 - 1930 гг. в нашей стране в работах А. С. Серебровского и его молодых сотрудников - Н. П. Дубинина, Б. Н. Сидорова и других - была впервые экспериментально показана функциональная сложность

Молекулярно-генетические подходы в исследовании тонкого строения генов. Интрон-экзонная организация генов эукариот, сплайсинг.
При изучении первичной структуры, т. е. последовательности нуклеотидов, ряда генов выяснилось, что в них, наряду с участками, кодирующими специфичный для этого гена продукт (полипептид, рРНК, тАНК

Генетический контроль и механизмы эксцизионной пострепликативной репарации, репарация неспаренных оснований, репаративный синтез ДНК.
Восстановление повреждений в клетке получило название репарации. Эксцизионная – восстанавливает повреждения, возникающие под действием не только ультрафиолетовых лучей, но и ионизирующей радиации и

Типы структурных повреждений в ДНК и репарационные процессы. Нарушения в процессах репарации как причина наследственных молекулярных болезней.
ДНК может повреждаться разнообразными мутагенами, к которым относятся окисляющие и алкилирующие вещества, а также высокоэнергетическая электромагнитная радиация — ультрафиолетовое и рентгеновское и

Задачи и методология генетической инженерии. Методы выделения и синтеза генов. Понятие о векторах. Векторы на основе плазмид и ДНК фагов.
С начала 1970-х гг., когда появилась первая публикация о получении in vitro рекомбинантной ДНК, возникла новая наука — генная инженерия. Ее основные направления — создание трансгенных животн

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги