рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Лекция 1 Предмет ветеринарная генетика и ее задачи. Генетика популяций

Лекция 1 Предмет ветеринарная генетика и ее задачи. Генетика популяций - раздел Биология, Лекция 1 Предмет Ветеринарная Ген...

Лекция 1 Предмет ветеринарная генетика и ее задачи. Генетика популяций

Генетика (от греч. genesis – происхождение) – наука о наследственности и изменчивости организмов. Наследственность – свойство организмов… Наследственность, изменчивость и отбор – основа эволюции. Мутации поставляют… Знание закономерностей наследственности и изменчивости способствует более быстрому созданию новых пород животных,…

Лекция 2 Цитологические основы наследственности

 

Эукариотическая клетка (клетка грибов, растений и животных) является основной единицей живого и способна размножаться, видоизменяться и реагировать на раздражения. Она покрыта цитоплазматической мембраной, которая играет важную роль в регулировании состава клеточного содержимого, так как через нее проникают все питательные вещества и продукты секреции.

Цитоплазма находится внутри цитоплазматической мембраны, но вне ядра и представляет собой гиалоплазму (жидкую часть) и эргастоплазму (органеллы). Органеллы по строению делят на мембранные и немембранные. Мембранами образована эндоплазматическая сеть (ЭПС), заполняющая большую часть цитоплазмы, митохондрии, аппарат Гольджи и лизосомы. Существует два типа ЭПС: гранулярная, к мембранам которой прикреплено множество рибосом - мелких рибонуклеопротеидных частиц, служащих местом синтеза белка, и агранулярная, состоящая из одних только мембран.

Митохондрии – тельца величиной 0,2-5 мкм (микрометров), форма которой варьирует от сферической до палочковидной и нитевидной. Митохондрии сосредоточены в той части клетки, где обмен веществ наиболее и интенсивен. Каждая митохондрия ограничена двойной мембраной; внешний слой мембраны образует гладкую наружную поверхность, а от внутреннего слоя отходят многочисленные складки – кристы. Кристы содержат ферменты, участвующие в системе переноса электронов, которая играет важнейшую роль в превращении энергии питательных веществ в биологически полезную энергию, необходимую для осуществления клеточных функций. Полужидкое внутреннее содержимое митохондрии – матрикс – тоже содержит ферменты. Митохондрии, главная функция которых состоит в вырабатывании энергии, образно называют электростанциями клетки.

Комплекс Гольджи – компонент цитоплазмы, встречающийся почти во всех клетках, кроме зрелых спермиев и красных кровяных телец (эритроцитов), - представляет собой неупорядоченную сеть канальцев, выстланных мембранами. Обычно он расположен около ядра и окружает центриоли (немембранные органеллы цитоплазмы, играющие важную роль в клеточном делении, образуя веретено деления). Комплекс Гольджи служит местом временного хранения веществ, вырабатываемых в гранулярной эндоплазматической сети, а канальцы комплекса соединены с плазматической мембраной.

Лизосомы – группа внутриклеточных органелл, встречающихся в животных клетках, сходны по величине с митохондриями и представляют собой ограниченные мембраной тельца, которые содержат разнообразные ферменты, способные гидролизовать макромолекулярные компоненты клетки. В случае проникновения в клетку чужеродной ДНК (вируса) лизосомы выделяют в цитоплазму ферменты, расщепляющие ДНК, - нуклеазы, и тем самым выполняют защитную функцию.

Каждая клетка содержит ядро, которое служит важным регулирующим центром клетки. Ядро содержит наследственные факторы (гены), определяющие признаки данного организма, и управляет многими внутриклеточными процессами. Ядерная оболочка (кариолемма) окружает ядро и отделяет его от цитоплазмы и регулирует движение веществ из ядра и в ядро. Ядерный сок (кариоплазма) – полужидкое основное вещество ядра, в котором размещается строго определенное число нитевидных образований, называемых хромосомами. Хромосомы имеют продолговатую форму, состоят из двух хроматид с расположенной в том или ином участке перетяжкой - центромерой. Центромера делит хромосому на две части, называемые плечами хромосомы. Встречаются равноплечие хромосомы (метацентрические), неравноплечие (субметацентрические, акроцентрические). Длина хромосомы варьирует от 1 до 30 мкм. Более чем половину всей массы хромосомы составляет белок гистон, обладающий щелочными свойствами вследствие высокой концентрации в нем аминокислот аргинина и лизина. Хромосома содержит некоторое количество белка, имеющего кислотные свойства. ДНК и РНК содержатся в хромосомах в небольших, но измеримых количествах.

Гистон и ДНК объединены в структуру, называемую хроматиновой нитью, которая представляет собой двойную спираль ДНК, окружающую гистоновый стержень; она построена из повторяющихся единиц (нуклеосом), в каждую из которых входят примерно 200 пар оснований ДНК и по две молекулы каждого из четырех гистонов.

Хроматиновая нить обычно образует спираль диаметром около 25 мкм. По способности окрашиваться ядерными красителями хроматиновые нити подразделяют на две группы: эухроматин и гетерохроматин. Последний окрашивается более интенсивно.

Перед началом клеточного деления большая часть хроматина уплотняется, образуя хромосомы. Число хромосом в клеточных ядрах всех особей какого-либо вида постоянно и представляет собой один из его признаков. Зигота содержит диплоидный набор хромосом. Одинарный набор хромосом называют геномом. Набор хромосом, свойственный тому или иному виду животных называют кариотипом. Различают пары аутосом и последнюю пару половых хромосом.

В ядре находится сферическое тельце (одно или несколько), называемое ядрышком. Ядрышки исчезают, когда клетка готовится к делению, а затем появляются вновь. В ядрышках синтезируется рРНК (рибосомальная рибонуклеиновая кислота), из которой формируются частицы рибосом.

Митоз

Митоз – это непрямое деление соматических клеток, при котором каждая из двух дочерних клеток получает такое же количество и те же типы хромосом, какие имела материнская клетка. Промежуток времени между окончанием одного клеточного деления и окончанием последующего называют митотическим циклом, который подразделяется на митоз и интерфазу. Интерфаза включает тир периода. В первом периоде интерфазы, идущим вслед за прошедшим митозом и обозначаемой G1 (пресинтетическая фаза), осуществляется синтез белков иРНК. Затем следует период синтеза ДНК (фаза S - синтетическая), в течение которого количество ДНК в ядре клетки удваивается. В постсинтетический период (фаза G2) происходит синтез РНК и белков (в особенности ядерных) и накапливается энергия для следующего митоза.

Митоз делится на четыре стадии: профазу, метафазу, анафазу и телофазу. В первой стадии митоза – профазе – происходит формирование хромосом. Каждая хромосома состоит из двух хроматид, спирально закрученных друг относительно друга. Хроматиды утолщаются и укорачиваются в результате процесса внутренней спирализации.

Начинает выявляться слабо окрашенная и менее конденсированная область хромосомы – центромера. Во время профазы ядрышки постепенно уменьшаются в размерах, пока в конце концов их материал не диспергируется. Ядерная оболочка также распадается, и хромосомы оказываются в цитоплазме. В это время центриоль делится и дочерние центриоли расходятся в противоположные концы клетки. От каждой центриоли отходят тонкие нити в виде лучей; между центриолями формируются нити веретена деления. После разрушения ядерной оболочки каждая хромосома прикрепляется к нитям веретена при помощи своей центромеры.

Хромосомы выстраиваются в плоскости экватора, образуя метафазную пластинку, и начинается следующий период митоза – метафаза. Центромера делится , и хроматиды превращаются в две совершенно обособленные дочерние хромосомы. Деление центромер происходит одновременно во всех хромосомах.

Центромеры расщепляются и это уже начало анафазы. Выстроившись вдоль экватора хромосомы (сестринские хроматиды) тот час же начинают расходиться к разным полюсам клетки.

Телофаза начинается с момента достижения хромосомами полюсов. Хромосомы возвращаются в состояние, при котором видны лишь хроматиновые нити или гранулы; вокруг каждого дочернего ядра образуется ядерная оболочка. На этом завершается деление ядра, называемое кариокинезом, за которым следует деление тела клетки, или цитокинез.

У большинства типов клеток весь процесс митоза занимает один-два часа. Регулярный и упорядоченный митотический процесс обеспечивает передачу генетической информации каждому из дочерних ядер; в результате каждая клетка содержит генетическую информацию обо всех признаках организма.

Мейоз

Мейоз (от греч. уменьшение) был открыт В.Флеммингом у животных в 1882 году. Мейоз – это уменьшительное деление половых клеток (яйцеклеток и сперматозоидов). Мейоз состоит из двух клеточных делений, при которых число хромосом уменьшается вдвое, так что гаметы получают вдвое меньше хромосом, чем другие клетки тела. Отличительной особенностью первого деления мейоза является сложная и сильно растянутая по времени профаза I, в которой выделяют пять стадий: лептотена, зиготена, пахитена, диплотена и диакинез. Лептотена (стадия тонких нитей) – начало конденсации хромосом, в целом напоминает раннюю профазу митоза, отличаясь более тонкими хромосомами и крупными ядрами. Зиготена (стадия сливающихся нитей) – сближение и начало коньюгации (попарного временного сближения гомологичных хромосом, при котором возможен обмен их гомологичными участками – кроссинговер) гомологичных (сходных) хромосом; к концу ее все гомологи объединяются в биваленты (двойни гомологичных хромосом). В пахитене (стадия толстых нитей) происходит кроссинговер. Диплотена (стадия двойных нитей, или стадия четырех хроматид) начинается взаимным отталкиванием гомологов и появлением хиазм (места соединения хроматид разных хромосом); у подавляющего большинства организмов в диплотене происходит дальнейшая спирализация хромосом и редукция числа ядрышек. Завершается обмен гомологичными участками хроматид. Для диакинеза (стадия обособления двойных нитей) характерны уменьшение числа хиазм и значительная компактность бивалентов. Биваленты гомологичных хромосом отходят к периферии ядра, так, что их легко подсчитать. На этом завершается профаза I.

Метафаза I начинается с момента исчезновения ядерной оболочки. Биваленты располагаются в экваториальной плоскости клетки. Формируется веретено деления.

В анафазе I начинается движение гомологичных хромосом к полюсам клетки. То есть именно в анафазе происходит редукция – сокращение числа хромосом.

Телофаза I характеризуется обособлением двух дочерних ядер. Ее нередко рассматривают как состояние покоя между двумя делениями мейоза интеркинез.

Второе деление мейоза происходит в обоих дочерних ядрах так же, как и в митозе. Моновалентные хромосомы (каждая из которых состоит из двух хроматид) сокращаются (профаза II) и ориентируются по экватору (метафаза II). Возникает веретено деления из ахроматиновых нитей. В стадии анафазы II хроматиды отделяются друг от друга и быстро расходятся к разным полюсам. В телофазе II происходят образование ядер, деспирализация хромосом. В результате двух последовательных делений мейоза из одной исходной диплоидной клетки образуются 4 гаплоидные генетически разнородные клетки.

Гаметогенез

В сперматогенезе различают четыре периода: размножения, роста, созревания и формирования. В первом периоде диплоидные клетки – сперматогонии… Оогенез состоит из трех периодов: размножения, роста и созревания. В период… Оплодотворение – это слияние мужской половой клетки с женской с образованием зиготы. Самое главное в процессе…

Селекция наследственность ген генетика


Лекция 3 Молекулярные основы наследственности

В 1927 году Кольцовым М.К. была выдвинута гипотеза о белковой природе гена. Изучение химии нуклеиновых кислот (рибонуклеиновой и… Исследованиями Ф.Гриффитса (1928), О.Эвери, К.Мак-Леода (1944) доказано, что… Структурной единицей ДНК является нуклеотид. В состав каждого нуклеотида входит три компонента: остаток фосфорной…

Транспортные РНК синтезируются в ядре, но функционируют в свободном состоянии в цитоплазме клетки. Одна молекула тРНК содержит 76-85 нуклеотидов и имеет довольно сложную структуру, напоминающую клеверный лист. Три участка тРНК имеют особо важное значение: 1) антикодон, состоящий из трех нуклеотидов, определяющий место прикрепления тРНК к соответствующему комплементарному кодону (мРНК) на рибосоме; 2) участок, определяющий специфичность тРНК, способность данной молекулы прикрепляться только к определенной аминокислоте; 3) акцепторный участок, к которому прикрепляется аминокислота. Он одинаков для всех тРНК и состоит из трех нуклеотидов – ЦЦА. Присоединению аминокислоты к тРНК предшествует ее активация ферментом аминоацил-тРНК-синтетазой. Этот фермент специфичен для каждой аминокислоты. Активированная аминокислота прикрепляется тРНК и доставляется ею на рибосому.

Молекула мРНК выходит из ядра в цитоплазму и прикрепляется к малой субъединице рибосомы. Трансляция начинается со стартового кодона (инициатора синтеза) –АУГ. Когда тРНК доставляет к рибосоме активированную аминокислоту, ее антикодон соединяется водородными связями с нуклеотидами комплементарного кодона мРНК. Акцепторный конец тРНК с соответствующей аминокислотой прикрепляется к поверхности большой субъединице рибосомы. После первой аминокислоты другая тРНК доставляет следующую аминокислоту, и таким образом на рибосоме синтезируется полипептидная цепь. Синтез полипептидной цепи прекращается, когда на мРНК появляется один из кодонов-терминаторов – УАА, УАГ или УГА. Начало синтеза полипептидной цепи называется инициацией, а окончание синтеза – терминацией.

 

Лекция 4. Закономерности наследования признаков при половом размножении (менделизм)

 

Г.Мендель в 1865 г. сформулировал идею о существовании наследственных факторов. Гибридологический метод, связанный с изучением характера наследования отдельных признаков и свойств позволил Менделю выявить и сформулировать основные правила наследственности.

К основным особенностям гибридологического метода изучения наследственности относят:

- использование в качестве исходных форм для скрещивания растений, отличающихся друг от друга сравнительно небольшим количеством (одна, две или три пары) контрастных признаков, и тщательный учет характера наследования каждого из них;

- точный количественный учет гибридных растений, различающийся по отдельным признакам, в ряде последовательных поколений;

- индивидуальный анализ потомства от каждого растения в ряде последовательных поколений;

- недопустимость влияния чужеродного генетического материала и родительские расы и гибриды;

- сохранение способности к размножению у гибридов и их потомков.

Одной из главных причин, обеспечивших успех в работе Менделя, был удачный выбор объекта исследования. Работа была проведена на однолетнем растении - горохе, который имеет много сортов с четко различающимися признаками. Горох легко культивируется, является строгим самоопылителем, строение его цветков таково, что почти невозможен занос чужой пыльцы, но при необходимости, можно производить искусственное опыление.

При изучении наследования признаков составляют схемы скрещивания. Скрещивание обозначают знаком умножения (х), который ставится между родителями. При написании схем женский пол обозначают знаком ♀ (символ планеты Венеры), мужской - ♂ (символ планеты Марс), родительские формы - буквой Р (от англ. родители). В строке ниже родителей записывают все типы производимых ими гамет (половых клеток). Полученное в результате скрещивания потомство называют гибридами и обозначают буквой F, внизу буквы ставят цифру, указывающую, к какому поколению оно относится. Например, F1 - гибриды первого поколения, F2- второго поколения и т.д.

Датский ученый В.Иоганнсен в 1909 г. ввел понятия «ген», «генотип» и «фенотип». Ген - единица наследственности. Генотип - совокупность наследственных задатков (генов) организма Фенотипом называют совокупность всех признаков и свойств организма, доступных наблюдению и анализу. Фенотип формируется под влиянием генотипа и условий чреды. В 1902 г. английский зоолог В.Бэтсон ввел понятия «гомозигота» и «гетерозигота». Гомозиготными называют особей, получивших от отца и матери одинаковые наследственные задатки (гены). Гетерозиготными называют особей, получивших от отца и матери разные гены. Таким образом, по генотипу особи могут быть гомозиготными (АА или аа) или гетерозиготными (Аа).

При гибридологическом анализе довольно часто используют реципрокное скрещивание. Реципрокным называют два скрещивания, в одном из которых определенным признаком отличается отцовская форма, во втором - материнская. На основании проведенных опытов Менделем установлено три закона и правило чистоты гамет.

1 закон (правило) Менделя - закон единообразия гибридов первого поколения. Сущность его заключается в том, что при скрещивании гомозиготных родительских форм, различающихся по своим признакам, первое поколение получается единообразным.

Мендель начал изучать закономерности наследования признаков с моногибридного скрещивания, т.е. со скрещивания сортов гороха, отличающихся друг от друга только одним признаком. Он избрал для анализа семь пар четко различающихся признаков: форма зрелых семян - круглая или морщинистая, окраска семядолей зрелых семян - желтая или зеленая, окраска цветков и семенной кожуры - белая или окрашенная и др. Скрещивая между собой горох с альтернативными признаками, Мендель обнаружил, что у гибридов первого поколения появляется признак только одного из родителей (доминантный - А), в то время как признак другого родителя в гибридных формах остается скрытым (рецессивный - а). У гороха доминировала округлая форма семян над морщинистой, желтая окраска семядолей над зеленой. Полученные гибриды были одинаковы независимо от того, отцовскому или материнскому растению принадлежали доминирующие признаки. Например, наследственный задаток доминантной желтой окраски семядолей будет А, рецессивный задаток зеленой окраски - а.

2 закон Менделя - закон расщепления гибридов второго поколения при скрещивании гибридов первого поколения между собой. Суть правила расщепления заключается в следующем: во втором поколении моногибридного скрещивания наблюдается расщепление по фенотипу в соотношении 3:1, по генотипу в соотношении 1:2:1 (одна часть особей, гомозиготных по доминантному признаку, две части гетерозиготных и одна часть гомозиготных по рецессивному признаку).

Дигибридное скрещивание - это скрещивание особей, которые отличаются между собой по двум парам альтернативных признаков.

3 закон Менделя - закон независимого наследования генов (признаков А и В), которые находятся в разных парах хромосом. Генетически обусловленные признаки наследуются независимо друг от друга, сочетаясь во всех возможных комбинациях. Каждая пара аллельных генов наследуется по типу моногибридного скрещивания (3А+1а) х (3В+1в)=9АВ:3Ав:3аВ:1ав, то есть расщепление по фенотипу будет 9:3:3:1. По генотипу расщепление 1:2:1:2:4:2:1:2:1 = (1АА+2Аа+1аа)х(1ВВ+2Вв+1вв). Аллельными называют гены, которые располагаются в одном локусе (месте) гомологичных хромосом.

Вывод формулы расщепления по генотипу при дигибридном скрещивании

 

Расщепление по генотипу По одной паре аллелей
  АА 2Аа аа
По другой паре аллелей ВВ ААВВ 2АаВВ ааВВ
2Вв 2ААВв 4АаВв 2ааВв
вв ААвв 2Аавв аавв

 

При опылении растений гороха с круглыми желтыми семенами (ААВВ) пыльцой сорта с морщинистыми зелеными семенами (аавв) все семена гибридов первого поколения оказались круглыми и желтыми (АаВв - дигетерозиготные). Доминировали та же форма и тот же цвет семян, что и при моногибридном скрещивании. При скрещивании гибридов первого поколения между собой получили вышеназванное расщепление. Мендель сумел определить генотип каждого из растений.. Растения имеющие два доминантных признака, круглые и желтые семена, различались по генотипу в соотношении 1 ААВВ+2ААВв+2АаВВ+4АаВв, с морщинистыми желтыми семенами - в соотношении 1 ааВВ+2ааВв, с круглыми зелеными семенами - в соотношении 1ААвв+2Аавв и одна часть особей с морщинистыми зелеными семенами имела генотип аавв.

Правило чистоты гамет состоит в том, что у гетерозиготной особи наследственные задатки не смешиваются друг с другом, а передаются в половые клетки в чистом виде.

 

Лекция 5. Типы взаимодействия аллельных и неаллельных генов

 

Аллельные гены - это когда каждый ген определяет один признак.

К взаимодействию аллельных генов относят: неполное доминирование, промежуточных характер наследования, кодоминирование и сверхдоминирование.

При неполном доминировании отдельные контрастные признаки, контролируемые одной парой аллельных генов, у гомозиготных родителей в первом поколении занимают промежуточное положение, все особи гетерозиготные однотипные. Во втором поколении, при скрещивании особей первого поколения между собой происходит расщепление 1:2:1 как по генотипу, так и по фенотипу. Например, при скрещивании коров с белыми пятнами на туловище, белым брюхом и ногами с быками со сплошной окраской получается потомство со сплошной окраской, но с небольшими пятнами на ногах или других частях туловища.

При промежуточном характере наследования потомство в первом поколении сохраняет единообразие, но оно не похоже полностью ни на одного из родителей, как это было при полном доминировании, а обладает признаком промежуточного характера. Например, известно, что среди овец наряду с нормальноухими, имеющими длину уха около 10 см, дает в первом поколении потомство исключительно с короткими ушами - длиной около 5 см.

Кодоминирование - это когда у гибридной особи в равной мере проявляются оба родительских признака. По типу кодоминирования наследуется большинство антигенных факторов довольно многочисленных систем крови у разных видов домашних животных и человека. Также наследуются разные типы белков и ферментов: гемоглобин, трансферрин, амилаза, церулоплазмин.

При сверхдоминировании у гибридов первого поколения проявляется гетерозис. Гетерозисом называется явление превосходства потомства над родительскими формами по жизнеспособности, энергии роста, плодовитости и продуктивности. Сверхдоминирование - это взаимодействие между генами, которые являются аллельными, в результате чего гетерозиготные особи превосходят по фенотипическому показателю обе гомозиготы. В качестве примера можно использовать три различных генотипа, такие, как А1А1, А1А2 и А2А2. Под взаимодействием подразумевается явление, когда при одновременном наличии А1 и А2 (в генотипе А1А2). они синтезируют продукт или дают результат, которого нет в том случае, когда эти гены встречаются по отдельности, как в генотипах А1А1и А2А2. Для иллюстрации этого типа взаимодействия (действия между аллелями) можно использовать одну группу крови у кроликов. У животных генотипа А1А1 вырабатывается антиген1 (первый антиген), а у генотипа А2А2 имеется антиген 2. Кролики генотипа А1А2 синтезируют не только антиген 1 и 2, но и третий антиген (антиген 3). Таким образом гены А1 и А2 продуцируют совместно антиген, которого они не вырабатывают по отдельности.

При сверхдоминировании гетерозиготы оказываются более жизнеспособными, но при спаривании между собой они расщепляются и дают лишь около 50% гетерозигот.

Гены, влияющие на развитие признака, локализованные в разных парах гомологичных хромосом, называются неаллельными. Различают несколько видов взаимодействия неаллельных генов (новообразование, комплементарное, эпистаз, модификации, полимерия).

Иногда на один и тот же признак влияют две или несколько пар неаллельных генов. Формирование признака в этом случае зависит от характера их взаимодействия в процессе развития.

Новообразованием называется такой тип взаимодействия генов, когда при их сочетании в одном организме развивается совершенно новая форма признака. Известно, что у кур гены розовидного и стручковидного гребня не являются аллельными и стручковидный и розовидный гребень доминирует над листовидным. При скрещивании кур породы виандот, имеющих розовидный гребень (РРсс), с петухами породы брама со стручковидным гребнем (ррСС) у потомков первого поколения (РрСс) в результате взаимодействия двух доминантных генов Р и С развивается новая форма гребня - ореховидная. Скрещивание потомков первого поколения между собой ведет к получению в о втором поколении четырех разных фенотипов в соотношении: 9 с генами Р и С с гребнем ореховидной формы, 3 Рсс - с гребнем розовидной формы, 3 ррС - со стручковидным гребнем и 1 ррсс - с листовидным гребнем. Расщепление по фенотипу 9:3:3:1. В этом случае взаимодействие неаллельных генов Р и С обусловливает образование новой формы гребня, в то время как каждый из этих генов в отдельности проявляет свой собственный эффект. Особь с листовидным гребнем является двойным рецессивом.

Комплементарное (дополняющее) взаимодействие генов. В том случае, когда признак образуется при наличии двух доминантных неаллельных генов, каждый из которых не имеет самостоятельного фенотипического выражения, гены обозначают как комплементарные. Например, при скрещивании белых минорок с белыми шелковистыми курами первое поколение получается окрашенным. Для развития окраски необходимо, чтобы в организме синтезировалось вещество (белок), обусловливающее окраску, и фермент, превращающий это вещество в пигмент. Обычно способность синтезировать какое-либо вещество доминирует над неспособностью к его образованию. Белые минорки имеют генотип ССоо. Они способны синтезировать вещество, необходимое для образования пигмента, но неспособны синтезировать фермент, превращающий это вещество в пигмент. Белые шелковистые куры имеют генотип ссОО. Они неспособны синтезировать нужное для пигмента вещество, но обладают способностью синтезировать фермент. При спаривании таких кур между собой (ССоо х ссОО) потомки первого поколения получаются окрашенными (СсОо). В этом случае произошло образование пигмента в результате включения в генотип птиц первого поколения обоих доминантных генов - С (обусловливающего синтез вещества) и О (обусловливающего синтез фермента). Во втором поколении окрашенных птиц ожидается 9 частей (С..О..), а белых - 7 частей (С..оо - 3, ссО.. - 3 и ссоо - 1).

Комплементарным взаимодействием генов обусловлен, очевидно, особый тип паралича задних конечностей у помесных собак, полученных от скрещивания датского дога с сенбернаром. Генетический анализ, проведенный Стокардом, показал, что при чистопородном разведении, как у датских догов, так и у сенбернаров паралич не наблюдается. В то же время из 57 помесей первого поколения, полученных от реципрокных скрещиваний указанных пород и доживших до 3-месячного возраста, только 3 или 4 не имели такого дефекта. Среди помесей второго поколения из 66 щенят, доживших до 3 месяцев, была парализована почти треть. Заболевание проявляется внезапно в возрасте около 3 месяцев. Тяжесть заболевания может быть различной: от слабой парализованности до полной утраты способности к самостоятельному передвижению. Аналогичное заболевание встречается у некоторых помесных собак-ищеек.

Эпистаз. При этом типе взаимодействия один доминантный ген, например ген С, подавляет действие другого неаллельного доминантного гена В. При генотипе ССВВ проявляются признаки, обусловленные геном С. Подавляющий развитие другого признака ген называется эпистатичным, а подавляемый ген называется гипостатичным. Например, у лошади серая доминирующая масть, связанная с ранним поседением, перекрывает все другие масти. При скрещивании серой лошади генотипа ССВВ с рыжей генотипа ссвв все потомки первого поколения будут серыми с генотипом СсВв. При скрещивании потомков первого поколения между собой во втором поколении наблюдается расщепление по фенотипу: 12 серых, 3 вороных и 1 рыжая. Аллель серой масти (С) перекрывает действие других независимых генов окраски. Все лошади, имеющие в генотипе аллель С, будут серыми. Если аллель С отсутствует, при наличии в генотипе аллеля В лошадь будет вороной (ссВВ, ссВв) и лошадь с генотипом ссвв, двойным рецессивом, будет рыжей окраски.

Полимерия. При полимерии, или полимерном (полигенном) наследовании, на один и тот же признак влияет несколько разных, но сходно действующих неаллельных генов. Каждый из этих генов усиливает развитие признака. Такие однозначно действующие гены называют аддитивными. Впервые этот тип взаимодействия был установлен Нильсоном-Эле при изучении наследования окраски чешуи овса и зерен пшеницы. Полимерные гены обозначаются одной буквой с цифровыми индексами: А1, А2, А3, А4 и т.д.

При скрещивании особей, различающихся по количественным признакам, в первом поколении не наблюдается полного доминирования признака одного из родителей, а во втором поколении нет четкого расщепления, а есть его оттенки. Соотношение по фенотипу 15:1.

Например, при скрещивании кур, гомозиготных по двум парам различных рецессивных аллелей (а1а1а2а2), обусловливающих неоперенные ноги, с петухами, гомозиготными по доминантным аллелям (А1А1А2А2), все цыплята в первом поколении имеют оперенные ноги. Во втором поколении можно лишь условно наметить фенотипические классы. Все потомство представляет непрерывный ряд, от оперенных в разной степени до неоперенных. Отношение оперенных к неоперенным составляет 15:1.

У кур понятие «коричневая окраска» объединяет широкую гамму оттенков этого цвета, от очень светлых до темно-красно-коричневых. Породы этой группы широко распространены, имеют большое промышленное значение. Генетической особенностью их является обусловленность цвета оперения преобладанием феомеланина, из-за чего эти породы называют феомеланиновой группой. Определенного гена коричневой или другой окраски оперения кур этой группы не существует. Многообразие оттенков и интенсивность коричневых тонов контролируется большим количеством генов (А1А1А2А2 А3А3А4А4), многие из которых обладают аддитивным действием. Наследование феомеланиновых окрасок оперения кур подчиняется общим закономерностям наследования признаков.

У овец известны полимерные гены и их рецессивные аллели, обуславливающие различные модификации масти (от белой до коричневой или черной).

Гены-модификаторы. Гены, не проявляющие собственного действия, но усиливающие или ослабляющие эффект действия других генов, называются генами-модификаторами. Изучение окраски у млекопитающих показало, что наряду с крайними формами, обладающими полным развитием пигмента или его отсутствием, наблюдается целый ряд генотипически обусловленных переходных форм. Имеется не менее трех пар генов-модификаторов, влияющих на количество красного пигмента в волосе крупного рогатого скота. В результате у гомозиготных по рецессивному гену красной масти животных интенсивность окраски колеблется от вишневой, как у скота красной горбатовской породы, до палевой и почти белой с желтоватым оттенком у коров симментальской породы. Гены-модификаторы играют определенную роль в формировании у животных резистентности к инфекционным и неинфекционным заболеваниям. Скот герефордской породы имеет белую голову, и при пастбищном содержании в условиях сильной солнечной инсоляции животные с непигментированными и слабопигментированными веками болеют раком глаз. При пигментации век частота заболевания уменьшается, а при интенсивной пигментации в тех же условиях заболевание не возникает. Оказалось, что интенсивность пигментации кожи вокруг глаз у белоголовых животных наследственна. Это говорит о существовании генов-модификаторов основного гена, обусловливающего белую окраску головы. Таким, образом, путем селекции можно избавиться от заболевания глаз раком.

У кур известны гены ослабители окраски оперения Bl, Sd, pk, ig, mi, Li, lav. У ряда пород кур (черные испанские, орпингтоны, польские и др.) при действии генов-ослабителей черной пигментации происходит ослабление и нарушение стандартной окраски оперения. Ген Li - ослабитель коричневой окраски оперения, сцепленный с полом, превращает все участки оперения коричневой окраски в бледно-желтые. Рецессивный аутосомный мутантный ген лавандовой окраски lav превращает черную окраску перьев в серую, а красную - в палевую.

У кроликов известен ген-модификатор Н, усиливающий голубую масть у венской голубой породы.

У крупного рогатого скота гены-модификаторы контролируют пеструю окраску у группы черно-пестрых пород.

У овец каракульской породы доминантный ген О является ослабителем окрасок - черной (араби) и коричневой (камбар).

 

Лекция 6. Мутационная изменчивость

Ч.Дарвин справедливо считал, что одним из ведущих факторов эволюции является неопределенная наследственная изменчивость, которая в современном… Н.П.Дубинин считает, что важную роль в наследственной изменчивости играют… Термин «мутация» был введен в генетику Г.де Фризом, голландским ученым, который в течение многих лет (1886-1901)…

Особенности мутаций

2. Мутации возникают внезапно у единичных особей, носят случайный, ненаправленный характер, могут быть рецессивными и доминантными; 3. Мутации могут идти в разных направлениях, затрагивать один или несколько… 4. Одни и те же мутации могут возникать повторно.

Классификация мутаций

1. Геномные (полиплоидия)

А) Гаплоидия

Б)Эуплоидия

- автополиплоидия

- аллоплоидия

В). Гетероплоидия

2. Хромосомные аберации

- делеция

- дефишенси

- инверсия

- дупликация

- фрагментация

- транслокация

- транспозиция

3. Генные

- замена нуклеотидов в ДНК

- вставка или выпадение нуклеотидов в ДНК

Полиплоидия – это геномная мутация, обусловленная изменением числа хромосом в клетках, а также процесс возникновения или создания геномных мутантов (полиплоидов). Полиплоидия чаще встречается у растений и является защитной реакцией организма (в горах больше полиплоидных растений). Полиплоиды отличаются от диплоидов плодовитостью. Гаплоиды – это организмы, которые имеют одинарный набор хромосом. В клетках гаплоидов содержится только половина соматического набора хромосом (п), присущего данному виду, то есть такое же число хромосом, как и в нормальных половых клетках – гаметах. Гаплоиды бесплодны, но могут размножаться партеногенетически и сохраняться при вегетативном размножении.

Эуплоиды (истинные полиплоиды) – организмы, в клетках которых содержится более двух гаплоидных наборов хромосом одного вида или происходит соединение и кратное увеличение хромосомных наборов разных видов. Автополиплоиды – организмы, в клетках которых содержится более двух гаплоидных наборов хромосом, присущих данному виду (триплоиды (3 п число хромосом), тетраплоиды (4п), пентаплоиды (5п), гексаплоиды (6п) и т.д.). Автополиплоидия обуславливает изменение морфологических признаков и свойств, присущих исходным типам. У полиплоидов увеличиваются размеры ядра и клетки в целом, а также количество органоидов цитоплазмы – пластид, митохондрий, рибосом. Аллополиплоиды – межвидовые полиплоиды, в кариотипе которых содержаться удвоенные наборы хромосом разных видов. Аллополиплоидам обычно присущи признаки и свойства исходных диплоидных родительских форм в различных сочетаниях, как это обычно бывает при межвидовой и межродовой гибридизации. Полиплоидизация позволяет восстановить плодовитость, так как межвидовые и межродовые гибриды, как правило бесплодны.

Гетероплоиды – или анеуплоиды – это организмы, число хромосом у которых некратное гаплоидному (2п-1, 2п+1). Причиной возникновения гетероплоидов может быть отсутствие разделения хромосом на хроматиды, при отсутствии коньюгации гомологичных хромосом. В зависимости от числа дополнительных или недостающих хромосом применяют следующие термины: 2п-112 – моносомик, 2п-212 – нуллисомик, 2п+15 – трисомик, 2п+25 – тетрасомик. Нижний индекс указывает номер хромосомной пары в кариотипе, в которой изменилось число хромосом.

Полиплоидия у животных встречается крайне редко. Например, золотистый хомячок в кариотипе которого содержится 44 хромосомы, в то время как у животных других родов серого и обыкновенного хомяка их 22. У аксолотля были получены тетраплоидные самки. При скрещивании их с диплоидными самцами было получено триплоидное, полностью бесплодное потомство. Бычий гипогонадизм характеризуется трисомией по половой Х-хромосоме. Такие бычки отстают в росте и развитии, характеризуются недоразвитием вторичных половых признаков и сниженным уровнем спермопродукции вплоть до ее отсутствия.

У людей установлены и описаны следующие болезни (синдромы полиплоидии): синдром Патау – тяжелое заболевание, обусловленное трисомией по 13-й хромосоме. Частота встречаемости – 1:5000-7000 новорожденных. Характерна многопалость (полидактилия), пороки внутренних органов (перегородки сердца), головного мозга и высокая ранняя смертность. Синдром Дауна обусловлен трисомией по 21-1 хромосоме. Частота встречаемости 1:700-800 рождений. Характерна умственная отсталость, разболтанность суставов, пороки формы головы и лица. Моносомия по Х-хромосоме обуславливает синдром Шершевского-Тернера. Характерно бесплодие ( так как у таких женщин нет яичников), недоразвитие половых признаков, низкий рост. Отмечены случаи рождения мужчин только с одной Х-хромосомой, а У-хромосома отсутствует в результате анеуплоидной мутации. В медицине этот синдром называется Клайнфелтера. Характерно недоразвитие семенников, евнухоидное телосложение. Трисомия по хромосоме 8 приводит к ряду аномалий – косоглазию, дефектам в строении ногтей, увеличению носа и ушей, умственной отсталости. Нуллисомия (полное отсутствие какой-либо хромосомы) для человека смертельно. Нуллисомия по той или иной хромосоме может привести к гибели, и связана с фенотипическими изменениями.

Огромное большинство генов организма строго локализовано, каждый ген находится в определенном месте одной из хромосом. С помощью генетических и цитологических методов для каждой хромосомы можно составить ее генную карту. Только некоторые так называемые мобильные генетические элементы («прыгающие гены») могут быть разбросаны в разных местах хромосом и способны время от времени перемещаться в другие места той же или другой хромосомы.

Рассмотрим хромосомные аберрации (перестройки).

Характер хромосомной перестройки во многом зависит от состояния хромосомы в момент воздействия мутагенного фактора. Если хромосома находится в состоянии одиночной нити (период G1 интерфазы, анафаза и телофаза митоза), то в последующий период S интерфазы она удваивается и аберрация сохраняется в обеих хроматидах, то есть возникают хромосомные аберрации. Если мутаген действует на хромосому, находящуюся в состоянии двойной нити (период G2 или S интерфазы, профаза и метафаза митоза), аберрация может произойти только в одной хроматиде. В этом случае возникают хроматидные перестройки.

Различают внутри- и межхромосомные аберрации.

Внутрихромосомные аберрации.

Делеция – выпадение участка хромосомы в средней ее части, содержащего обычно целый комплекс генов. В случае выпадения концевого участка возникает концевая делеция – дефишенси. Когда делеция и дефишенси захватывают небольшой фрагмент хромосомы, это вызывает изменение признака, например желтую окраску тела и белоглазие у дрозофилы. Крупные делеции вызывают гибель организма. Иллюстрацией вредного действия крупных делеций может служить хронический миелоз у человека. Это тяжелая форма белокровия, характеризующаяся безудержным размножением некоторых видов лейкоцитов, вызывается очень крупной делецией в одной из аутосом 21-й пары.

Инверсия – возникает в результате разрыва хромосомы одновременно в двух местах с сохранением внутреннего участка, который воссоединяется с этой же хромосомой после поворота на 180 о. Инверсия не влияет на фенотип особи. Гетерозиготность по инверсии сильно мешает в мейозе нормальной коньюгации и образуются анеуплоидные половые клетки. У гомозиготных по инвертированной хромосоме особей коньюгация в мейозе протекает нормально. Результатом инверсии могут быть гетероплоидные потомки или бесплодие. Инверсии часто встречаются в природе. Особенно много получено данных о распространении инверсий в популяциях разных видов мух, комаров и мошек, у которых инверсии легко обнаружить в хромосомах слюнных желез, где они имеют огромные размеры и ясно выраженную структуру.

Дупликация – удвоение участка хромосомы. Характерны слабые фенотипические проявления. В эволюционном плане дупликации обогащают генотипы новыми генами (полосковидные глаза у дрозофилы при дупликации гена Bar).

Межхромосомные аберрации.

Транслокация- обмен участками между негомологичными хромосомами. У особей гетерозиготных по транслокации нарушается коньюгация гомологичных хромосом и образуются нежизнеспособные гаметы (или ранняя эмбриональная смертность). Такие особи характеризуются пониженной плодовитостью или образуются гетероплоидные потомки (мутанты тутового шелкопряда, где самцы выводятся только из белых яичек и образуют более крупные коконы для шелководства).

Транспозиция (инсерция)- это вставка в какое-либо место хромосомы мобильного генетического элемента (мгэ), перенесенного туда из другого места той же или другой хромосомы. В геноме организма может присутствовать несколько разных мгэ в сумме они могут составлять 10-15 % генома. Мутации, вызываемые транспозицией, иногда нестойки (ревертируемы). Для бактерий показано, что транспозиции мгэ могут происходить между близкими видами, а также между бактериальной хромосомой и геномом заразившего ее вируса (фага).

Фрагментация – происходит в результате разрыва хромосом или хроматид в нескольких местах одновременно. Обуславливает возникновение летальных мутантов.

Генные, или толчковые мутации – это изменение структуры молекулы ДНК на участке определенного гена, кодирующего синтез соответствующей белковой молекулы (или стойкие изменения отдельных генов). У любого организма генные мутации приводят к чрезвычайно разнообразным изменениям всевозможных морфологических, физиологических и биохимических признаков. У бактерий генные мутации изменяют цвет и форму колоний, подвижность клеток, темп их деления, способность сбраживать различные сахара, устойчивость к высокой температуре, лекарственным веществам, восприимчивость к заражению фагами, способность расти на неполноценной питательной среде, токсичность и т.д. У дрозофилы в результате генных мутаций изменяются цвет, размер и строение глаз, размер, форма и жилкование крыльев, строение брюшка, груди, ног и усиков, число, толщина и форма щетинок, плодовитость, продолжительность жизни, быстрота выработки условных рефлексов. Картина генных мутаций в общих чертах универсальна для всех живых существ.

Генные мутации могут быть доминантными, рецессивными или полудоминантными. Примером может служить доминантная мутация у дрозофилы, вызывающая развитие щетинок на жилках крыльев мухи. Различный характер редукции щетинок на теле дрозофилы вызывали множественные аллели гена scut – sc1,sc2,sc3. Впервые множественный аллелизм был установлен в 1930 г. А.С.Серебровским, Н.П.Дубининым и Б.П.Сидоровым у дрозофилы. Множественным аллелизмом называют различное состояние одного и того же локуса (гена), обусловленное толчковыми мутациями, детерминирующими различное проявление одного и того же признака или свойства. Аллели одного гена, возникшие в результате толчковой мутации, называют множественными аллелями. Ярким примером множественного аллелизма могут служить аллели, кодирующие синтез глобина – белка, необходимого для образования сложных молекул гемоглобина крови. Известно 100 типов гемоглобина, контролируемых серией множественных аллелей. В гомозиготном состоянии гемоглобин обусловливает тяжелое наследственное заболевание – серповидно-клеточную анемию.

Процесс восстановления первоначальной структуры и исправления повреждений молекулы ДНК называется репарацией. Наиболее изучены фотореактивация и темновая репарация. Фотореактивация осуществляется фотореактивирующим ферментом. Свет активирует фермент, и он восстанавливает исходную структуру молекулы ДНК, поврежденную ультрафиолетовыми лучами. Темновая репарация протекает в несколько этапов при участии четырех типов ферментов, последовательное действие которых исправляет повреждение ДНК (эндонуклеаза-обследует, эндонуклеаза-расширяет участок ДНК, ДНК-полимераза - синтезирует, лигаза – скрепляет синтезированные ДНК).

Генетические различия в активности репарирующих ДНК-ферментов представляет одну из главных причин разной устойчивости организмов к действию мутагенов, в частности ионизирующей радиации и ультрафиолетовых лучей. Подобные различия существуют не только между генотипически неодинаковыми особями в пределах вида, но и между равными видами. Так, у человека известна врожденная болезнь, называемая пигментной ксеродермией. Кожа таких людей ненормально чувствительна к солнечным лучам и при их интенсивном воздействии покрывается крупными пигментными пятнами, изъязвляется, а иногда процесс приобретает злокачественный характер (рак кожи). Пигментная ксеродермия вызывается мутацией, инактивирующей ген, ответственный за синтез фермента, репарирующего повреждения ДНК кожных клеток ультрафиолетовой частью солнечных лучей.

Знание разных типов мутаций и причин их возникновения необходимо для практической селекции микроорганизмов, возделываемых растений и домашних животных, а также для ветеринарной медицины и медицины с целью диагностики, предупреждения и изыскания способов лечения болезней животных и человека.

Наиболее разительны успехи в селекции бактерий и грибов – продуцентов антибиотиков и других биологически активных веществ. Активность лучистого гриба – продуцента витамина В12 – повысилась в 6 раз, а активность бактерии – продуцента аминокислоты лизина – в 300-400 раз. Искусственное вызывание мутаций используется и экономически оправданно в селекции растений. Пшеница, рожь, кукурузу, ячмень и другие культуры превосходят исходные формы по урожайности, содержанию белка, скороспелости, устойчивости к полеганию, к разным болезням. Советским генетиком Струнниковым В.А. разработан пригодный для практического шелководства и широко теперь внедренный способ получения у тутового шелкопряда только мужского потомства. Коконы самцов содержат на 25-30% больше шелка, чем коконы самок.

 

Лекция 7 Основы биохимической генетики

Гибрид, получивший название биохимической, или молекулярной генетики, оказался необычайно продуктивным и дал больше информации, чем ее можно было… В 1914 г. было показано, что у больных алкаптонурией отсутствует активность… Тирозиноз – заболевание, обусловленное нарушениями в метаболизме аминокислоты тирозина. Накопление в организме избытка…

Свойства генетического кода

2. Код триплетный. Месторасположение каждой аминокислоты кодируется сочетанием строго определенных трех нуклеотидов в мРНК, образующих один… 3. Код вырожденный. Одна аминокислота может кодироваться несколькими (от… 4. Код неперекрывающийся. Нуклеотидная последовательность считывается подряд в одном направлении – от 5' к 3',…

– Конец работы –

Используемые теги: Лекция, Предмет, Ветеринарная, Генетика, задачи, Генетика, популяций0.109

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Лекция 1 Предмет ветеринарная генетика и ее задачи. Генетика популяций

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Лекция 1. Предмет, задачи и методы педагогической психологии. Предмет и задачи педагогической психологии. Психология и педагогика. История развития педагогической психологии в России и за рубежом
План... Предмет и задачи педагогической психологии Психология и педагогика... История развития педагогической психологии в России и за рубежом...

ЛЕКЦИИ ПО ГИСТОЛОГИИ ЛЕКЦИЯ 1. ПРЕДМЕТ И ЗАДАЧИ ГИСТОЛОГИИ, ЦИТОЛОГИИ И ЭМБРИОЛОГИИ. ЦИТОПЛАЗМА. ОРГАНЕЛЛЫ И ВКЛЮЧЕНИЯ КЛЕТКИ. СИМПЛАСТЫ И СИНТИЦИИСТРУКТУРА ИЗУЧАЕМОГО ПРЕДМЕТА
ЛЕКЦИЯ ПРЕДМЕТ И ЗАДАЧИ ГИСТОЛОГИИ ЦИТОЛОГИИ И ЭМБРИОЛОГИИ ЦИТОПЛАЗМА ОРГАНЕЛЛЫ И ВКЛЮЧЕНИЯ КЛЕТКИ СИМПЛАСТЫ И СИНТИЦИИСТРУКТУРА ИЗУЧАЕМОГО... Гистология включает собственно гистологию цитологию и эмбриологию СОБСТВЕННО... ДЕСМОСОМЫ desmosoma характеризуются тем что между цитолеммами двух клеток имеются слоистые структуры в пределах...

Учебная программа курса. 4. Лекция 1. История психологии как наука. 5. Лекция 2. Античная философия и психология. 6. Лекция 3. Развитие психологии в Средневековый период. 19. Лекция 16. Тревога и защита
Введение... Учебная программа курса... Рабочая программа курса Лекция История психологии как наука...

Лекции 1.ОСНОВНЫЕ ПОНЯТИЯ И КАТЕГОРИЯ ИНФОРМАТИКИ. 2 ЛЕКЦИИ 2. МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ. СИСТЕМЫ СЧИСЛЕНИЯ. 12 ЛЕКЦИЯ 3. АППАРАТНОЕ ОБЕСПЕЧЕНИЕ ЭВМ. 20 ЛЕКЦИЯ 4. ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ КОМПЬЮТЕРОВ.. 49 Широко распространён также англоязычный вар
gl ОГЛАВЛЕНИЕ... Лекции ОСНОВНЫЕ ПОНЯТИЯ И КАТЕГОРИЯ ИНФОРМАТИКИ... ЛЕКЦИИ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ СИСТЕМЫ СЧИСЛЕНИЯ...

Генетика – наука о наследственности и изменчивости. Предмет, объекты и задачи генетики
Генетика наука о наследственности и изменчивости Предмет объекты и... Генетическая информация е свойства...

Лекция первая. ИСТОРИЯ СОЦИОЛОГИИ КАК ОБЛАСТЬ ЗНАНИЯ Лекция вторая. ИЗ КАКИХ ИДЕЙ РОДИЛАСЬ СОЦИОЛОГИЯ: ИНТЕЛЛЕКТУАЛЬНЫЕ ИСТОКИ НОВОЙ НАУКИ Лекция третья. СОЦИОЛОГИЯ ОГЮСТА КОНТА ЛЕКЦИИ
Оглавление... ОТ АВТОРА... Лекция первая ИСТОРИЯ СОЦИОЛОГИИ КАК ОБЛАСТЬ ЗНАНИЯ Лекция вторая ИЗ КАКИХ ИДЕЙ РОДИЛАСЬ СОЦИОЛОГИЯ ИНТЕЛЛЕКТУАЛЬНЫЕ ИСТОКИ НОВОЙ НАУКИ...

Курс русской истории Лекции I—XXXII КУРС РУССКОЙ ИСТОРИИ Лекции I—XXXII ЛЕКЦИЯ I Научная задача изучения местной истории
Все книги автора... Эта же книга в других форматах... Приятного чтения...

ЛЕКЦИЯ № 1. Факторы выживания в природной среде ЛЕКЦИЯ № 2. Обеспечение водой ЛЕКЦИЯ № 3. Обеспечение питанием ЛЕКЦИИ по ОБЖ
КЛАСС Содержание Стр I четверть ЛЕКЦИЯ Факторы выживания в природной среде ЛЕКЦИЯ... ЛЕКЦИЯ Факторы выживания в природной... ЛЕКЦИЯ Обеспечение питанием...

Лекции по статистике Лекция . Предмет, метод и задачи статистики. Аналитическая статистика
Лекция Предмет метод и задачи статистики... Статистика это общественная наука которая присущими ей методами изучает... Общая теория статистики отрасль статистической науки о наиболее общих принципах правилах и законах цифрового...

Предмет и задачи курса Предмет экономики природопользования – это система общественных отношений между людьми по
Q количество продукции... P цена единицы продукции D кривая спроса предельная общественная полезность...

0.036
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам