рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Наследственная изменчивость

Наследственная изменчивость - раздел Биология, Генетика Комбинативная Изменчивость. Наследственную, Или Геноти-Пическую, Изменчивость...

Комбинативная изменчивость. Наследственную, или геноти-пическую, изменчивость подразделяют на комбинативную и мутационную.

Комбинативной называют изменчивость, в основе которой лежит образование рекомбинаций, т. е. таких комбинаций генов, которых не было у родителей.

В основе комбинативной изменчивости лежит половое размножение организмов, вследствие которого возникает огромное разнообразие генотипов. Практически неограниченными источниками генетической изменчивости служат три процесса:

1. Независимое расхождение гомологичных хромосом в первом мейотическом делении. Именно независимое комбинирование хромосом при мейозе является основой третьего закона Менделя. Появление зеленых гладких и желтых морщинистых семян гороха во втором поколении от скрещивания растений с желтыми гладкими и зелеными морщинистыми семенами — пример комбинативной изменчивости.

2. Взаимный обмен участками гомологичных хромосом, или кроссинговер (см. рис. 3.10). Он создает новые группы сцепления, т. е. служит важным источником генетической рекомбинации аллелей. Рекомбинантные хромосомы, оказавшись в зиготе, способствуют появлению признаков, нетипичных для каждого из родителей.

3. Случайное сочетание гамет при оплодотворении.

Эти источники комбинативной изменчивости действуют независимо и одновременно, обеспечивая при этом постоянную «перетасовку» генов, что приводит к появлению организмов с другими генотипом и фенотипом (сами гены при этом не изменяются). Однако новые комбинации генов довольно легко распадаются при передаче из поколения в поколение.

Комбинативная изменчивость является важнейшим источником всего колоссального наследственного разнообразия, характерного для живых организмов. Однако перечисленные источники изменчивости не порождают существенных для выживания стабильных изменений в генотипе, которые необходимы, согласно эволюционной теории, для возникновения новых видов. Такие изменения возникают в результате мутаций.

Мутационная изменчивость. Мутационной называется изменчивость самого генотипа. Мутацииэто внезапные наследуемые изменения генетического материала, приводящие к изменению тех или иных признаков организма.

Основные положения мутационной теории разработаны Г. Де Фризом в 1901—1903 гг. и сводятся к следующему:

1. Мутации возникают внезапно, скачкообразно, как дискретные изменения признаков.

2. В отличие от ненаследственных изменений мутации представляют собой качественные изменения, которые передаются из поколения в поколение.

3. Мутации проявляются по-разному и могут быть как полезными, так и вредными, как доминантными, так и рецессивными.

4. Вероятность обнаружения мутаций зависит от числа исследованных особей.

5. Сходные мутации могут возникать повторно.

6. Мутации ненаправленны (спонтанны), т. е. мутировать может любой участок хромосомы, вызывая изменения как незначительных, так и жизненно важных признаков.

Почти любое изменение в структуре или количестве хромосом, при котором клетка сохраняет способность к самовоспроизведению, обусловливает наследственное изменение признаков организма. По характеру изменения генома, т. е. совокупности генов, заключенных в гаплоидном наборе хромосом, различают генные, хромосомные и геномные мутации.

Генные, или точковые, мутации— результат изменения нуклеотидной последовательности в молекуле ДНК в пределах одного гена. Такое изменение в гене воспроизводится при транскрипции в структуре иРНК; оно приводит к изменению последовательности аминокислот в полипептидной цепи, образующейся при трансляции на рибосомах. В результате синтезируется другой белок, что ведет к изменению соответствующего признака организма. Это наиболее распространенный вид мутаций и важнейший источник наследственной изменчивости организмов.

Существуют разные типы генных мутаций, связанных с добавлением, выпадением или перестановкой нуклеотидов в гене. Это дупликации(повторение участка гена), вставки (появление в последовательности лишней пары нуклеотидов), делеции ("выпадение одной или более пар нуклеотидов), замены нуклеотид-ных пар (AT -><- ГЦ; AT -><-; ЦГ; или AT -><- ТА), инверсии (переворот участка гена на 180°).

Эффекты генных мутаций чрезвычайно разнообразны. Большая часть из них фенотипически не проявляется, поскольку они рецессивны. Это очень важно для существования вида, так как в большинстве своем вновь возникающие мутации оказываются вредными. Однако их рецессивный характер позволяет им длительное время сохраняться у особей вида в гетерозиготном состоянии без вреда для организма и проявиться в будущем при переходе в гомозиготное состояние.

Вместе с тем известен ряд случаев, когда изменение лишь одного основания в определенном гене оказывает заметное влияние на фенотип. Одним из примеров служит такая генетическая аномалия, как серповидноклеточная анемия. Рецессивный аллель, вызывающий в гомозиготном состоянии это наследственное заболевание, выражается в замене всего одного аминокислотного остатка в (B-цепи молекулы гемоглобина (глутаминовая кислота —» —> валин). Это приводит к тому, что в крови эритроциты с таким гемоглобином деформируются (из округлых становятся серповидными) и быстро разрушаются. При этом развивается острая анемия и наблюдается снижение количества кислорода, переносимого кровью. Анемия вызывает физическую слабость, нарушения деятельности сердца и почек и может привести к ранней смерти людей, гомозиготных по мутантному аллелю.

Хромосомные мутации (перестройки, или аберрации) — это изменения в структуре хромосом, которые можно выявить и изучить под световым микроскопом.

Известны перестройки разных типов (рис. 3.13):

1. нехватка, или дефишенси, — потеря концевых участков хромосомы;

2. делеция — выпадение участка хромосомы в средней ее части;

3. дупликация — двух- или многократное повторение генов, локализованных в определенном участке хромосомы;

4. инверсия — поворот участка хромосомы на 180°, в результате чего в этом участке гены расположены в последовательности, обратной по сравнению с обычной;

5. транслокация — изменение положения какого-либо участка хромосомы в хромосомном наборе. К наиболее распространенному типу транслокаций относятся реципрокные, при которых происходит обмен участками между двумя негомологичными хромосомами. Участок хромосомы может изменить свое положение и без реципрокного обмена, оставаясь в той же хромосоме или включаясь в какую-то другую.

При дефишенси, делециях и дупликациях изменяется количество генетического материала. Степень фенотипического изменения зависит от того, насколько велики соответствующие участки хромосом и содержат ли они важные гены. Примеры дефишенси известны у многих организмов, включая человека. Тяжелое наследственное заболевание —синдром «кошачьего крика» (назван так по характеру звуков, издаваемых больными младенцами), обусловлен гетерозиготностью по дефишенси в 5-й хромосоме. Этот синдром сопровождается сильным нарушением роста и умственной отсталостью. Обычно дети с таким синдромом рано умирают, но некоторые доживают до зрелого возраста.

3.13. Хромосомные перестройки, изменяющие расположение генов в хромосомах.

Геномные мутации — изменение числа хромосом в геноме клеток организма. Это явление происходит в двух направлениях: в сторону увеличения числа целых гаплоидных наборов (полиплоидия) и в сторону потери или включения отдельных хромосом (анеуплоидия).

Полиплоидия — кратное увеличение гаплоидного набора хромосом. Клетки с разным числом гаплоидных наборов хромосом называются триплоидными (Зn), тетраплоидными (4n), гексанло-идными (6n), октаплоидными (8n) и т. д.

Чаще всего полиплоиды образуются при нарушении порядка расхождения хромосом к полюсам клетки при мейозе или митозе. Это может быть вызвано действием физических и химических факторов. Химические вещества типа колхицина подавляют образование митотического веретена в клетках, приступивших к делению, в результате чего удвоенные хромосомы не расходятся и клетка оказывается тетрагшоидной.

Для многих растений известны так называемые полиплоидные ряды. Они включают формы от 2 до 10n и более. Например, полиплоидный ряд из наборов в 12, 24, 36, 48, 60, 72, 96, 108 и 144 хромосомы составляют представители рода паслен (Solanum). Род пшеница (Triticum) представляет ряд, члены которого имеют 34, 28 и 42 хромосомы.

Полиплоидия приводит к изменению признаков организма и поэтому является важным источником изменчивости в эволюции и селекции, особенно у растений. Это связано с тем, что у растительных организмов весьма широко распространены гермафродитизм (самоопыление), апомиксис (партеногенез) и вегетативное размножение. Поэтому около трети видов растений, распространенных на нашей планете, — полиплоиды, а в резко континентальных условиях высокогорного Памира произрастает до 85% полиплоидов. Почти все культурные растения тоже полиплоиды, у которых, в отличие от их диких сородичей, более крупные цветки, плоды и семена, а в запасающих органах (стебель, клубни) накапливается больше питательных веществ. Полиплоиды легче приспосабливаются к неблагоприятным условиям жизни, легче переносят низкие температуры и засуху. Именно поэтому они широко распространены в северных и высокогорных районах.

В основе резкого увеличения продуктивности полиплоидных форм культурных растений лежит явление полимерии (см. § 3.3).

Анеуплоидия, или гетероплодия, — явление, при котором клетки организма содержат измененное число хромосом, не кратное гаплоидному набору. Анеуплоиды возникают тогда, когда не расходятся или теряются отдельные гомологичные хромосомы в митозе и мейозе. В результате нерасхождения хромосом при гамето-генезе могут возникать половые клетки с лишними хромосомами, и тогда при последующем слиянии с нормальными гаплоидными гаметами они образуют зиготу 2n + 1 (трисомик) по определенной хромосоме. Если в гамете оказалось меньше на одну хромосому, то последующее оплодотворение приводит к образованию зиготы 1n - 1 (моносомик) по какой-либо из хромосом. Кроме того, встречаются формы 2n - 2, или нуллисомики, так как отсутствует пара гомологичных хромосом, и 2n + х, или полисомики.

Анеуплоиды встречаются как у растений и животных, так и у человека. Анеуплоидные растения обладают низкой жизнеспособностью и плодовитостью, а у человека это явление нередко приводит к бесплодию и в этих случаях не наследуется. У детей, родившихся от матерей старше 38 лет, вероятность анеуплоидии повышена (до 2,5%). Кроме того, случаи анеуплоидии у человека вызывают хромосомные болезни.

У раздельнополых животных как в естественных, так и в искусственных условиях полиплоидия встречается крайне редко. Это обусловлено тем, что полиплоидия, вызывая изменение соотношения половых хромосом и аутосом, приводит к нарушению конъюгации гомологичных хромосом и тем самым затрудняет определение пола. В результате такие формы оказываются бесплодными и маложизнеспособными.

Спонтанные и индуцированные мутации. Спонтанными называют мутации, возникающие под влиянием неизвестных природных факторов, чаще всего как результат ошибок при воспроизведении генетического материала (ДНК или РНК). Частота спонтанного мутирования у каждого вида генетически обусловлена и поддерживается на определенном уровне.

Индуцированный мутагенез — это искусственное получение мутаций с помощью физических и химических мутагенов. Резкое увеличение частоты мутаций (в сотни раз) происходит под воздействием всех видов ионизирующих излучений (гамма- и рентгеновские лучи, протоны, нейтроны и др.), ультрафиолетового излучения, высоких и низких температур. К химическим мутагенам относятся такие вещества, как формалин, азотистый иприт, колхицин, кофеин, некоторые компоненты табака, лекарственных препаратов, пищевых консервантов и пестицидов. Биологическими мутагенами являются вирусы и токсины ряда плесневых грибов.

В настоящее время ведутся работы по созданию методов направленного воздействия различных мутагенов на конкретные гены. Такие исследования очень важны, поскольку искусственное получение мутаций нужных генов может иметь большое практическое значение для селекции растений, животных и микроорганизмов.

Закон гомологических рядов в наследственной изменчивости. Крупнейшим обобщением работ по изучению изменчивости в начале XX в. стал закон гомологических рядов в наследственной изменчивости. Он был сформулирован выдающимся русским ученым Н. И. Вавиловым в 1920 г. Сущность закона заключается в следующем: виды и роды, генетически близкие, связанные друг с другом единством происхождения, характеризуются сходными рядами наследственной изменчивости. Зная, какие формы изменчивости встречаются у одного вида, можно предвидеть нахождение аналогичных форм у родственного ему вида.

В основе закона гомологических рядов фенотипической изменчивости у родственных видов лежит представление о единстве их происхождения от одного предка в процессе естественного отбора. Поскольку общие предки имели специфический набор генов, то их потомки должны обладать примерно таким же набором.

Более того, у родственных видов, имеющих общее происхождение, возникают и сходные мутации. Это означает, что у представителей разных семейств и классов растений и животных со сходным набором генов можно встретить параллелизм — гомологические ряды мутаций по морфологическим, физиологическим и биохимическим признакам и свойствам. Так, у разных классов позвоночных встречаются сходные мутации: альбинизм и отсутствие перьев у птиц, альбинизм и бесшерстность у млекопитающих, гемофилия у многих млекопитающих и человека. У растений наследственная изменчивость отмечена по таким признакам, как пленчатое или голое зерно, остистый или безостый колос и др.

Закон гомологических рядов, отражая общую закономерность мутационного процесса и формообразования организмов, представляет широкие возможности для его практического использования в сельскохозяйственном производстве, селекции, медицине. Знание характера изменчивости нескольких родственныхх видов дает возможность поиска признака, который отсутствует у одного из них, но характерен для других. Таким путем были собраны и изучены голозерные формы злаков, односемянные сорта сахарной свеклы, не нуждающиеся в прорывке, что особенно важно при механизированной обработке почв. Медицинская наука в качестве моделей для изучения болезней человека получила возможность использовать животных с гомологическими заболеваниями: это сахарный диабет крыс; врожденная глухота мышей, собак, морских свинок; катаракта глаз мышей, крыс, собак и др.

Закон гомологических рядов позволяет также предвидеть возможность появления мутаций, еще неизвестных науке, которые могут использоваться в селекции для создания новых ценных для хозяйства форм.

 

 

Фенотип и генотип. Моногибридным называется скрещивание, при котором родительские формы отличаются друг от друга по одной паре контрастных, альтернативных признаков.

Признак —любая особенность организма, т. е. любое отдельное его качество или свойство, по которому можно различить две особи. У растений это форма венчика (например, симметричный—асимметричный) или его окраска (пурпурный—белый), скорость созревания растений (скороспелость—позднеспелость), устойчивость или восприимчивость к заболеванию и т. д.

Совокупность всех признаков организма, начиная с внешних и кончая особенностями строения и функционирования клеток, тканей и органов, называется фенотипом. Этот термин может употребляться и по отношению к одному из альтернативных признаков.

Признаки и свойства организма проявляются под контролем наследственных факторов, т. е. генов. Совокупность всех генов организма называют генотипом.

Примерами моногибридного скрещивания, проведенного Г. Менделем, могут служить скрещивания гороха с такими хорошо заметными альтернативными признаками, как пурпурные и белые цветки, желтая и зеленая окраска незрелых плодов (бобов), гладкая и морщинистая поверхность семян, желтая и зеленая их окраска и др.

Единообразие гибридов первого поколения (первый закон Менделя). При скрещивании гороха с пурпурными и белыми цветками Мендель обнаружил, что у всех гибридных растений первого поколения (F1) цветки оказались пурпурными. При этом белая окраска цветка не проявлялась (рис. 3.1).

Мендель установил также, что все гибриды F1 оказались единообразными (однородными) по каждому из семи исследуемых им признаков.

Рис. 3.1. Схема моногибридного скрещивания: Iгомозиготные особи с доминантным признаком; 2гетерозиготные особи с доминантным или промежуточным признаком; 3гомозиготные особи с рецессивным признаком.

Следовательно, у гибридов первого поколения из пары родительских альтернативных признаков проявляется только один, а признак другого родителя как бы исчезает. Явление преобладания у гибридов F1 признаков одного из родителей Мендель назвал доминированием, а соответствующий признак — доминантным. Признаки, не проявляющиеся у гибридов F1 он назвал рецессивными.

Поскольку все гибриды первого поколения единообразны, это явление было названо К. Корренсом первым законам Менделя, или законом единообразия гибридов первого поколения, а также правилом доминирования.

Закон расщепления (второй закон Менделя).Из гибридных семян гороха Мендель вырастил растения, которые подверг самоопылению, и образовавшиеся семена вновь высеял. В результате было получено второе поколение гибридов, или гибриды F2. Среди последних обнаружилось расщепление по каждой паре альтернативных признаков в соотношении примерно 3:1, т. е. три четверти растений имели доминантные признаки (пурпурные цветки, желтые семена, гладкие семена и т. д.) и одна четверть — рецессивные (белые цветки, зеленые семена, морщинистые семена и т. д.). Следовательно, рецессивный признаку гибрида F1 не исчез, а только был подавлен и вновь проявился во втором поколении. Это обобщение позднее было названо вторым законом Менделя, или законом расщепления.

Гомозиготные и гетерозиготные особи. Чтобы выяснить, как будет осуществляться наследование признаков в третьем, четвертом и последующих поколениях, Мендель путем самоопыления вырастил гибриды этих поколений и проанализировал полученное потомство. Он выяснил, что растения, обладающие рецессивными признаками (например, белые цветки), в следующих поколениях (F3 F4 и т. д.), воспроизводят потомство только с белыми цветками (см. рис. 3.1).

Иначе вели себя гибриды второго поколения, обладающие доминантными признаками (например, пурпурными цветками). Среди них при анализе потомства Мендель обнаружил две группы растений, внешне совершенно неразличимых по каждому конкретному признаку.

Первая группа, составляющая 1/3 от общего числа растений с доминантным признаком, далее не расщеплялась, т. е. во всех последующих поколениях у них обнаруживалась только пурпурная окраска цветков. Оставшиеся 2/3 растений второго поколения в F3, снова давали расщепление такое же, как в F2 т. е. на три растения с пурпурными цветками появлялось одно с белыми.

Особи, которые не дают в потомстве расщепления и сохраняют свои признаки в «чистом» виде, называют гомозиготными, а те, у которых в потомстве происходит расщепление, —гетерозиготными.

Таким образом, Менделем впервые было установлено, что растения, сходные по внешним признакам, могут обладать различными наследственными свойствами.

Аллелизм. Для установления причины расщепления, причем в строго определенных численных отношениях доминантных и рецессивных признаков, следует вспомнить, что связь между поколениями при половом размножении осуществляется через половые клетки (гаметы). Очевидно, гаметы несут материальные наследственные задатки, или факторы, определяющие развитие того или иного признака. Эти факторы позже и были названы генами.

В соматических клетках диплоидного организма эти задатки являются парными: один получен от отцовского организма, а другой — от материнского. Мендель предложил обозначать доминантные наследственные задатки заглавной буквой (например,А), а соответствующие им рецессивные задатки прописной буквой (а). Пару генов, определяющих альтернативные признаки, называют аллеломорфной парой, а само явление парности — алле-лизмом.

Каждый ген имеет два состояния — А и а, поэтому они составляют одну пару, а каждого из членов пары называют аллелем. Таким образом,гены, расположенные в одних и тех же локусах (участках) гомологических хромосом и определяющие альтернативное развитие одного и того же признака, называются аллельными. Например, пурпурная и белая окраска цветка гороха является доминантным и рецессивным признаками соответственно двум аллелям и а) одного гена. Благодаря наличию двух аллелей возможны два состояния организма: гомо- и гетерозиготные. Если организм содержит одинаковые аллели конкретного гена (АА или аа), то он называется гомозиготным по данному гену (или признаку), а если разные (Аа) — то гетерозиготным. Следовательно, аллель — это форма существования гена.

Примером трехаллельного гена является ген, определяющий у человека систему группы крови АВ0. Аллелей бывает и больше: для гена, контролирующего синтез гемоглобина человека, их известно много десятков.

Статистический анализ расщепления. Представим результаты опытов Менделя по моногибридному скрещиванию гороха в виде схемы (рис. 3.2). Символы Р, F1, F2 и т- д. обозначают родительское, 1-е и 2-е поколение соответственно, знак умножения указывает скрещивание, символ о* обозначает мужской пол, a Q — женский. Из схемы видно, что в родительском поколении (Р) материнская и отцовская формы гомозиготны по исследуемому признаку, поэтому производят гаметы только с аллелем А или только с а.

При оплодотворении эти гаметы образуют зиготу, которая имеет оба аллеля Аа — доминантный и рецессивный. В результате все гибриды F1единообразны по конкретному признаку, поскольку доминантный аллель А подавляет действие рецессивного аллеля а. Во время образования гамет аллели А и а попадают в них по одному. Следовательно, гибридные организмы способны производить гаметы двух типов, несущие аллели А и а, т. е. являются гетерозиготными.

Рис. 3.2. Наследование пурпурной и белой окраски цветков гороха.

Для облегчения расчета сочетаний разных типов гамет английский генетик Р. Пеннет предложил производить запись в виде решетки, которая и вошла в литературу под назван и ем решетка Пеннета (см. рис. 3.2). Слева по вертикали располагаются женские гаметы, сверху по горизонтали — мужские. В квадраты решетки вписывают образующиеся сочетания гамет, которые соответствуют генотипам зигот.

При самоопылении в F2 получается расщепление по генотипу вотношении 1АА:2Аа:1аа, т. е. одна четвертая часть гибридов гомозиготны по доминантным аллелям, половина — гетерозиготны и одна четвертая часть — гомозиготны по рецессивным аллелям. Так как генотипам АА и Аасоответствует один и тот же фенотип — пурпурная окраска цветка, расщепление по фенотипу будет следующим; 3 пурпурных: 1 белый. Следовательно, расщепление по фенотипу не совпадает с расщеплением по генотипу.

Теперь легко объяснить, почему гомозиготные белоцветко-вые растения второго поколения с рецессивными аллелями аа при самоопылении b F3 дают только себе подобных. Такие растения производят гаметы одного типа, и, как следствие, расщепления не наблюдается. Ясно также, что среди пурпурноцветковых 1 /3 доминантных гомозигот (АА) также не будет давать расщепления, а 2/3 гетерозиготных растений (Аа) будут давать b F3 расщепление 3:1, как и у гибридов F2

На основании, анализа результатов моногибридното скрещивания были сформулированы не только первый и второй законы Менделя и правило доминирования, но и правило чистоты гамет.

Правило чистоты гамет. При моногибридном скрещивании в случае полного доминирования у гетерозиготных гибридов (Аа) первого поколения проявляется только доминантный аллель (А); рецессивный же (а) не теряется и не смешивается с доминантным. В F2 как рецессивный, так и доминантный аллели могут проявляться в своем «чистом» виде. При этом аллели не только не смешиваются, но и не претерпевают изменений после совместного пребывания в гибридном организме. В результате гаметы, образуемые такой гетерозиготой, являются «чистыми» в том смысле, что гамета А «чиста» и не содержит ничего от аллеля а, а гамета а «чиста» от А. Это явление несмешивания аллелей пары альтернативных признаков в гаметах гибрида получило название правило чистоты гамет. Данное правило, сформулированное У. Бэтсоном, указывает на дискретность гена, несмешиваемость аллелей друг с другом и другими генами. Цитологическая основа правила чистоты гамет и закона расщепления заключается в том, что гомологичные хромосомы и локализованные в них гены, контролирующие альтернативные признаки, распределяются по разным гаметам.

Анализирующее скрещивание. При полном доминировании судить о генотипе организма по его фенотипу невозможно, поскольку и доминантная гомозигота (АА), и гетерозигота (Аа) обладают фено-типически доминантным признаком. Для того чтобы отличить доминантную гомозиготу от гетерозиготной, используют метод, называемый анализирующим скрещиванием, т. е. скрещивание исследуемого организма с организмом, гомозиготным по рецессивным аллелям. В этом случае рецессивная форма (аа) образует только один тип гамет с аллелем а, что позволяет проявиться любому из двух аллелей исследуемого признака уже в первом поколении.

Например, у плодовой мухи дрозофилы длинные крылья доминируют над зачаточными. Особь с длинными крыльями может быть гомозиготной(LL) или гетерозиготной (Ll). Для установления ее генотипа надо провести анализирующее скрещивание между этой мухой и мухой, гомозиготной по рецессивным аллелям. Если у всех потомков от этого скрещивания будут длинные крылья, то особь с неизвестным генотипом гомозиготна по доминантным аллелям (LL), Если же в первом поколении произойдет расщепление на доминантные и рецессивные формы в отношении 1:1, то можно сделать вывод, что исследуемый организм является гетерозиготным.

Таким образом, по характеру расщепления можно проанализировать генотип гибрида, типы гамет, которые он образует, и их соотношение. Поэтому анализирующее скрещивание является очень важным приемом генетического анализа и широко используется в генетике и селекции.

 

 

– Конец работы –

Эта тема принадлежит разделу:

Генетика

Во всех случаях анализ результатов показал что отношение доминантных признаков к рецессивным в поколении F составляло примерно... Приведенный выше пример типичен для всех экспериментов Менделя в которых... На основании этих и аналогичных результатов Мендель сделал следующие выводы...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Наследственная изменчивость

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Возвратное, или анализирующее, скрещивание
Организм из поколения F1, полученного от скрещивания между гомозиготной доминантной и гомозиготной рецессивной особями, гетерозиготен по своему генотипу, но обладает доминантным фенотипом. Для того

Дигибридное скрещивание и закон независимого распределения
Установив возможность предсказывать результаты скрещиваний по одной паре альтернативных признаков, Мендель перешел к изучению наследования двух пар таких признаков. Скрещивания между особями, разли

Краткое изложение сути гипотез Менделя
· Каждый признак данного организма контролируется парой аллелей. · Если организм содержит два различных аллеля для данного признака, то один из них (доминантный) может проявляться, полност

Хромосомная теория наследственности
К концу XIX в. в результате повышения оптических качеств микроскопов и совершенствования цитологических методов возможно стало наблюдать поведение хромосом в гаметах и зиготах. Еще в 1875 г. Гертви

Сцепление
Все ситуации и примеры, обсуждавшиеся до сих пор, относились к наследованию генов, находящихся в разных хромосомах. Как выяснили цитологи, у человека все соматические клетки содержат по 46 хромосом

Группы сцепления и хромосомы
Генетические исследования, проводившиеся в начале нашего века, в основном были направлены на выяснение роли генов в передаче признаков. Работы Моргана с плодовой мушкой Drosophila melanogaster пока

Гигантские хромосомы и гены
В 1913 г. Стертевант начал свою работу по картированию положения генов в хромосомах дрозофилы, во это было за 21 год до того, как появилась возможность связать различимые в хромосомах структуры с г

Определение пола
Рисунок 1. Хромосомные наборы самца и самки D. melanogaster. Они состоят из четырех пар хромосом (пара I - пол

Неполное доминирование
Известны случаи, когда два или более аллелей не проявляют в полной мере доминантность или рецессивность, так что в гетерозиготном состоянии ни один из аллелей не доминирует над другим. Это явление

Летальные гены
Известны случаи, когда один ген может оказывать влияние на несколько признаков, в том числе на жизнеспособность. У человека и других млекопитающих определенный рецессивный ген вызывает образование

Эпистаз
Ген называют эпистатическим (от греч. еpi - над), если его присутствие подавляет эффект какого-либо гена, находящегося в другом локусе. Эпистатические гены иногда называют ингибирующими генами, а т

Изменчивость
Изменчивостью называют всю совокупность различий по тому или иному признаку между организмами, принадлежащими к одной и той же природной популяции или виду. Поразительное морфологическое разнообраз

Дискретная изменчивость
Некоторые признаки в популяции представлены ограниченным числом вариантов. В этих случаях различия между особями четко выражены, а промежуточные формы отсутствуют; к таким признакам относятся, напр

Непрерывная изменчивость
По многим признакам в популяции наблюдается полный ряд переходов от одной крайности к другой без всяких разрывов. Наиболее яркими примерзлая служат такие признаки, как масса (вес), линейные размеры

Влияние среды
Главный фактор, детерминирующий любой фенотипический признак, - это генотип. Генотип организма определяется в момент оплодотворения, но степень последующей экспрессии этого генетического потенциала

Источники изменчивости
Необходимо ясно представлять себе, что взаимодействие между дискретной и непрерывной изменчивостью и средой делает возможным существование двух организмов с идентичным фенотипом. Механизм репликаци

Мутации
Мутацией называют изменение количества или структуры ДНК данного организма. Мутация приводит к изменению генотипа, которое может быть унаследовано клетками, происходящими от мутант- ной клетки в ре

Генные мутации
Внезапные спонтанные изменения фенотипа, которые нельзя связать с обычными генетическими явлениями или микроскопическими данными о наличии хромосомных аберраций, можно объяснить только изменениями

Значение мутаций
Хромосомные и генные мутации оказывают разнообразные воздействия на организм. Во многих случаях эти мутации летальны, так как нарушают развитие; у человека, например, около 20% беременностей заканч

Дигибридное скрещивание
Сущность дигибридного скрещивания. Организмы различаются по многим генам и, как следствие, по многим признакам. Чтобы одновременно проанализировать наследование нескольких признаков, необходимо изу

Методы генетики
Основным является гибридологический метод — система скрещиваний, позволяющая проследить закономерности наследования признаков в ряду поколений. Впервые разработан и использован Г.

Генетическая символика
Предложена Г. Менделем, используется для записи результатов скрещиваний: Р — родители; F — потомство, число внизу или сразу после буквы указывает на порядковый ном

Закон единообразия гибридов первого поколения, или первый закон Менделя
Успеху работы Менделя способствовал удачный выбор объекта для проведения скрещиваний — различные сорта гороха. Особенности гороха: 1) относительно просто выращивается и имеет короткий период развит

Закон расщепления, или второй закон Менделя
Г. Мендель дал возможность самоопылиться гибридам первого поколения. У полученных таким образом гибридов второго поколения проявился не только доминантный, но и рецессивный признак. Результаты опыт

Закон чистоты гамет
С 1854 года в течение восьми лет Мендель проводил опыты по скрещиванию растений гороха. Им было выявлено, что в результате скрещивания различных сортов гороха друг с другом гибриды первого поколени

Цитологические основы первого и второго законов Менделя
Во времена Менделя строение и развитие половых клеток не было изучено, поэтому его гипотеза чистоты гамет является примером гениального предвидения, которое позже нашло научное подтверждение.

Закон независимого комбинирования (наследования) признаков, или третий закон Менделя
Организмы отличаются друг от друга по многим признакам. Поэтому, установив закономерности наследования одной пары признаков, Г. Мендель перешел к изучению наследования двух (и более) пар альтернати

Цитологические основы третьего закона Менделя
Пусть А — ген, обусловливающий развитие желтой окраски семян, а — зеленой окраски, В — гладкая форма семени, b — морщинистая. Скр

Лекция №18. Сцепленное наследование
В 1906 году У. Бэтсон и Р. Пеннет, проводя скрещивание растений душистого горошка и анализируя наследование формы пыльцы и окраски цветков, обнаружили, что эти признаки не дают независимого распред

Хромосомное определение пола
Большинство животных являются раздельнополыми организмами. Пол можно рассматривать как совокупность признаков и структур, обеспечивающих способ воспроизводства потомства и передачу наследственной и

Наследование признаков, сцепленных с полом
Установлено, что в половых хромосомах находятся гены, отвечающие не только за развитие половых, но и за формирование неполовых признаков (свертываемость крови, цвет зубной эмали, чувствительность к

Лекция №20. Взаимодействие генов
Многочисленные опыты подтвердили правильность установленных Менделем закономерностей. Вместе с тем, появились факты, показывающие, что полученные Менделем числовые соотношения при расщеплении гибри

ВИДЫ ВЗАИМОДЕЙСТВИЯ АЛЛЕЛЬНЫХ ГЕНОВ
Различают полное доминирование, неполное доминирование, кодоминирование, аллельное исключение. Аллельными генами называются гены, расположенные в идентичных локусах гомоло

Полное доминирование
Полное доминирование — это вид взаимодействия аллельных генов, при котором фенотип гетерозигот не отличается от фенотипа гомозигот по доминанте, то есть в фенотипе гетерозигот прис

Неполное доминирование
Так называется вид взаимодействия аллельных генов, при котором фенотип гетерозигот отличается как от фенотипа

Кодоминирование
Кодоминирование — вид взаимодействия аллельных генов, при котором фенотип гетерозигот отличается как от фенотипа гомозигот по доминанте, так и от фенотипа гомозигот по рецессиву, и

Комплементарность
Комплементарность — вид взаимодействия неаллельных генов, при котором признак формируется в результате суммарного сочетания продуктов их доминантных аллелей. Имеет место при наслед

Эпистаз
Эпистаз — вид взаимодействия неаллельных генов, при котором одна пара генов подавляет (не дает проявиться в фенотипе) другую пару генов. Ген-подавитель называют эп

Полимерия
Это вид взаимодействия двух и более пар неаллельных генов, доминантные аллели которых однозначно влияют на развитие одного и того же признака. Полимерное действие генов может быть кумулятив

Лекция №21. Изменчивость
Изменчивость — способность живых организмов приобретать новые признаки и свойства. Благодаря изменчивости, организмы могут приспосабливаться к изменяющимся условиям среды обитания.

Мутации
Мутации — это стойкие внезапно возникшие изменения структуры наследственного материала на различных уровнях его организации, приводящие к изменению тех или иных признаков организма

Генные мутации
Генные мутации — изменения структуры генов. Поскольку ген представляет собой участок молекулы ДНК, то генная мутация представляет собой изменения в нуклеотидном составе этого участ

Хромосомные мутации
Это изменения структуры хромосом. Перестройки могут осуществляться как в пределах одной хромосомы — внутрихромосомные мутации (делеция, инверсия, дупликация, инсерция), так и между хромосомами — ме

Геномные мутации
Геномной мутацией называется изменение числа хромосом. Геномные мутации возникают в результате нарушения нормального хода митоза или мейоза. Гаплоидия — у

Нерасхождение половых хромосом во время мейоза у матери
Р ♀46, XX × ♂46, XY Типы гамет

Нерасхождение половых хромосом во время мейоза у отца
Р ♀46, XX × ♂46, XY Типы гамет

Закон гомологических рядов наследственной изменчивости Н.И. Вавилова
«Виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллел

Искусственное получение мутаций
В природе постоянно идет спонтанный мутагенез, но спонтанные мутации — достаточно редкое явление, например, у дрозофилы мутация белых глаз образуется с частотой 1:100 000 гамет. Факторы, в

Модификационная изменчивость
Модификационная изменчивость — это изменения признаков организмов, не обусловленные изменениями генотипа и возникающие под влиянием факторов внешней среды. Среда обитания играет бо

Вариационная кривая
На основании вариационного ряда строится вариационная кривая — графическое отображение частоты встречаемости каждой варианты. Среднее значение признака встречается чаще, а

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги